School of Physics, University of New South Wales, Sydney, NSW 2052, Australia.
Mater Horiz. 2021 Jan 1;8(1):224-233. doi: 10.1039/d0mh01070g. Epub 2020 Nov 9.
A central endeavour in bioelectronics is the development of logic elements to transduce and process ionic to electronic signals. Motivated by this challenge, we report fully monolithic, nanoscale logic elements featuring n- and p-type nanowires as electronic channels that are proton-gated by electron-beam patterned Nafion. We demonstrate inverter circuits with state-of-the-art ion-to-electron transduction performance giving DC gain exceeding 5 and frequency response up to 2 kHz. A key innovation facilitating the logic integration is a new electron-beam process for patterning Nafion with linewidths down to 125 nm. This process delivers feature sizes compatible with low voltage, fast switching elements. This expands the scope for Nafion as a versatile patternable high-proton-conductivity element for bioelectronics and other applications requiring nanoengineered protonic membranes and electrodes.
生物电子学的一个主要目标是开发逻辑元件,以转换和处理离子到电子信号。受此挑战的启发,我们报告了完全单片的纳米级逻辑元件,其特点是电子通道为 n 型和 p 型纳米线,由电子束图案化的 Nafion 进行质子门控。我们展示了具有最先进的离子到电子转换性能的反相器电路,其直流增益超过 5,频率响应高达 2 kHz。一个促进逻辑集成的关键创新是一种新的电子束工艺,可将 Nafion 图案化,线宽可达 125nm。该工艺提供了与低电压、快速开关元件兼容的特征尺寸。这扩大了 Nafion 的应用范围,使其成为生物电子学和其他需要纳米工程质子膜和电极的应用的多功能可图案化高质子传导元件。