Department of Materials Science and Engineering, Drexel University , Philadelphia, Pennsylvania, United States.
Nano Lett. 2013 Sep 11;13(9):4152-7. doi: 10.1021/nl401737u. Epub 2013 Aug 12.
Group III-V coaxial core-shell semiconducting nanowire heterostructures possess unique advantages over their planar counterparts in logic, photovoltaic, and light-emitting devices. Dimensional confinement of electronic carriers and interface complexity in nanowires are known to produce local electronic potential landscapes along the radial direction that deviate from those along the normal to planar heterojunction interfaces. However, understanding of selected electronic and optoelectronic carrier transport properties and device characteristics remains lacking without a direct measurement of band alignment in individual nanowires. Here, we report on, in the GaAs/AlxGa1-xAs and GaAs/AlAs core-shell nanowire systems, how photocurrent and photoluminescence spectroscopies can be used together to construct a band diagram of an individual heterostructure nanowire with high spectral resolution, enabling quantification of conduction band offsets.
III-V 族共轴核壳半导体纳米线异质结构在逻辑、光伏和发光器件方面比其平面对应物具有独特的优势。众所周知,纳米线中电子载流子的维度限制和界面复杂性会沿径向产生偏离平面异质结界面的局部电子势景观。然而,如果没有对单个纳米线中能带排列的直接测量,那么对于特定的电子和光电载流子输运性质以及器件特性的理解仍然是缺乏的。在这里,我们报告了在 GaAs/AlxGa1-xAs 和 GaAs/AlAs 核壳纳米线系统中,如何结合光电流和光致发光光谱学来构建具有高光谱分辨率的单个异质结构纳米线的能带图,从而实现导带偏移量的量化。