Suppr超能文献

基底神经节脉冲神经网络模型中不确定性下的决策制定。

Decision making under uncertainty in a spiking neural network model of the basal ganglia.

作者信息

Héricé Charlotte, Khalil Radwa, Moftah Marie, Boraud Thomas, Guthrie Martin, Garenne André

机构信息

* University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.

† CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France.

出版信息

J Integr Neurosci. 2016 Dec;15(4):515-538. doi: 10.1142/S021963521650028X. Epub 2016 Dec 21.

Abstract

The mechanisms of decision-making and action selection are generally thought to be under the control of parallel cortico-subcortical loops connecting back to distinct areas of cortex through the basal ganglia and processing motor, cognitive and limbic modalities of decision-making. We have used these properties to develop and extend a connectionist model at a spiking neuron level based on a previous rate model approach. This model is demonstrated on decision-making tasks that have been studied in primates and the electrophysiology interpreted to show that the decision is made in two steps. To model this, we have used two parallel loops, each of which performs decision-making based on interactions between positive and negative feedback pathways. This model is able to perform two-level decision-making as in primates. We show here that, before learning, synaptic noise is sufficient to drive the decision-making process and that, after learning, the decision is based on the choice that has proven most likely to be rewarded. The model is then submitted to lesion tests, reversal learning and extinction protocols. We show that, under these conditions, it behaves in a consistent manner and provides predictions in accordance with observed experimental data.

摘要

决策和行动选择的机制通常被认为受平行的皮质-皮质下环路控制,这些环路通过基底神经节连接回不同的皮质区域,并处理决策的运动、认知和边缘模式。我们利用这些特性,在之前基于速率模型方法的基础上,在脉冲神经元层面开发并扩展了一个联结主义模型。该模型在灵长类动物研究过的决策任务中得到了验证,其电生理学解释表明决策分两步进行。为了对此进行建模,我们使用了两个平行环路,每个环路都基于正反馈和负反馈通路之间的相互作用进行决策。该模型能够像灵长类动物一样执行两级决策。我们在此表明,在学习之前,突触噪声足以驱动决策过程,而在学习之后,决策基于已被证明最有可能获得奖励的选择。然后,该模型接受损伤测试、反转学习和消退实验。我们表明,在这些条件下,它的行为具有一致性,并根据观察到的实验数据提供预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验