Suppr超能文献

用于差分机器人决策机制和运动控制神经调节的生物启发式神经网络。

Bio-inspired neural networks for decision-making mechanisms and neuromodulation for motor control in a differential robot.

作者信息

Guerrero-Criollo Roberto Jose, Castaño-López Jason Alejandro, Hurtado-López Julián, Ramirez-Moreno David Fernando

机构信息

Department of Engineering, Universidad Autónoma de Occidente, Cali, Colombia.

Department of Mathematics, Universidad Autónoma de Occidente, Cali, Colombia.

出版信息

Front Neurorobot. 2023 Feb 3;17:1078074. doi: 10.3389/fnbot.2023.1078074. eCollection 2023.

Abstract

The aim of this work is to propose bio-inspired neural networks for decision-making mechanisms and modulation of motor control of an automaton. In this work, we have adapted and applied cortical synaptic circuits, such as short-term memory circuits, winner-take-all (WTA) class competitive neural networks, modulation neural networks, and nonlinear oscillation circuits, in order to make the automaton able to avoid obstacles and explore simulated and real environments. The performance achieved by using biologically inspired neural networks to solve the task at hand is similar to that of several works mentioned in the specialized literature. Furthermore, this work contributed to bridging the fields of computational neuroscience and robotics.

摘要

这项工作的目的是提出受生物启发的神经网络,用于决策机制和自动机运动控制的调制。在这项工作中,我们采用并应用了皮质突触电路,如短期记忆电路、胜者全得(WTA)类竞争神经网络、调制神经网络和非线性振荡电路,以使自动机能够避开障碍物并探索模拟和真实环境。使用受生物启发的神经网络来解决手头任务所取得的性能与专业文献中提到的几项工作相似。此外,这项工作有助于弥合计算神经科学和机器人技术领域之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b08d/9936153/ea17c5aaccbb/fnbot-17-1078074-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验