Burton Shawn D, LaRocca Greg, Liu Annie, Cheetham Claire E J, Urban Nathaniel N
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.
Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania 15213, and.
J Neurosci. 2017 Feb 1;37(5):1117-1138. doi: 10.1523/JNEUROSCI.2880-16.2016. Epub 2016 Dec 21.
In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input.
The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory input to modulate principal cell activity selectively.
在主嗅球(MOB)中,嗅觉系统感觉处理的第一站,GABA能中间神经元信号塑造主要神经元活动以调节嗅觉。然而,缺乏已知的MOB中间神经元选择性标记物严重阻碍了对中间神经元功能的细胞类型选择性研究。在这里,我们鉴定了肾小球层投射深层短轴突细胞(GL-dSACs)的首个选择性标记物,并系统地研究了GL-dSACs在小鼠MOB回路中的结构、丰度、内在生理学、前馈感觉输入、神经调节、突触输出和功能作用。GL-dSACs位于内丛状层,在那里它们将离心胆碱能输入与高度汇聚的前馈感觉输入整合在一起。GL-dSAC轴突在肾小球层广泛分支,以向中间神经元和主要簇状细胞提供高度发散但具有选择性的输出。因此,GL-dSACs能够响应不同的感觉和自上而下的神经调节输入,在MOB的大片区域内改变主要簇状细胞与二尖瓣细胞活动的平衡。
细胞类型选择性分子标记物的鉴定极大地促进了我们对不同中间神经元如何塑造感觉处理和行为的理解。在主嗅球(MOB)中,抑制性回路精确调节主要细胞的活动以驱动嗅觉引导行为。然而,MOB中间神经元的选择性标记物在很大程度上仍然未知,限制了对嗅觉机制的理解。在这里,我们鉴定了一种新型深层短轴突细胞中间神经元群体的首个选择性标记物,该群体具有向MOB感觉输入层的浅表轴突投射。使用该标记物,结合免疫组织化学、急性切片电生理学和光遗传学回路映射,我们揭示了这种新型中间神经元群体将离心胆碱能输入与广泛调谐的前馈感觉输入整合在一起,以选择性地调节主要细胞活动。