Stefanescu Roxana A, Shore Susan E
Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan.
Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan;
J Neurophysiol. 2017 Mar 1;117(3):1229-1238. doi: 10.1152/jn.00270.2016. Epub 2016 Dec 21.
Cholinergic modulation contributes to adaptive sensory processing by controlling spontaneous and stimulus-evoked neural activity and long-term synaptic plasticity. In the dorsal cochlear nucleus (DCN), in vitro activation of muscarinic acetylcholine receptors (mAChRs) alters the spontaneous activity of DCN neurons and interacts with -methyl-d-aspartate (NMDA) and endocannabinoid receptors to modulate the plasticity of parallel fiber synapses onto fusiform cells by converting Hebbian long-term potentiation to anti-Hebbian long-term depression. Because noise exposure and tinnitus are known to increase spontaneous activity in fusiform cells as well as alter stimulus timing-dependent plasticity (StTDP), it is important to understand the contribution of mAChRs to in vivo spontaneous activity and plasticity in fusiform cells. In the present study, we blocked mAChRs actions by infusing atropine, a mAChR antagonist, into the DCN fusiform cell layer in normal hearing guinea pigs. Atropine delivery leads to decreased spontaneous firing rates and increased synchronization of fusiform cell spiking activity. Consistent with StTDP alterations observed in tinnitus animals, atropine infusion induced a dominant pattern of inversion of StTDP mean population learning rule from a Hebbian to an anti-Hebbian profile. Units preserving their initial Hebbian learning rules shifted toward more excitatory changes in StTDP, whereas units with initial suppressive learning rules transitioned toward a Hebbian profile. Together, these results implicate muscarinic cholinergic modulation as a factor in controlling in vivo fusiform cell baseline activity and plasticity, suggesting a central role in the maladaptive plasticity associated with tinnitus pathology. This study is the first to use a novel method of atropine infusion directly into the fusiform cell layer of the dorsal cochlear nucleus coupled with simultaneous recordings of neural activity to clarify the contribution of muscarinic acetylcholine receptors (mAChRs) to in vivo fusiform cell baseline activity and auditory-somatosensory plasticity. We have determined that blocking the mAChRs increases the synchronization of spiking activity across the fusiform cell population and induces a dominant pattern of inversion in their stimulus timing-dependent plasticity. These modifications are consistent with similar changes established in previous tinnitus studies, suggesting that mAChRs might have a critical contribution in mediating the maladaptive alterations associated with tinnitus pathology. Blocking mAChRs also resulted in decreased fusiform cell spontaneous firing rates, which is in contrast with their tinnitus hyperactivity, suggesting that changes in the interactions between the cholinergic and GABAergic systems might also be an underlying factor in tinnitus pathology.
胆碱能调制通过控制自发和刺激诱发的神经活动以及长期突触可塑性,对适应性感觉处理起到作用。在背侧耳蜗核(DCN)中,毒蕈碱型乙酰胆碱受体(mAChRs)的体外激活会改变DCN神经元的自发活动,并与N-甲基-D-天冬氨酸(NMDA)和内源性大麻素受体相互作用,通过将Hebbian长时程增强转换为反Hebbian长时程抑制,来调节平行纤维与梭形细胞之间突触的可塑性。由于已知噪声暴露和耳鸣会增加梭形细胞的自发活动,并改变刺激时间依赖性可塑性(StTDP),因此了解mAChRs对体内梭形细胞自发活动和可塑性的作用非常重要。在本研究中,我们通过向正常听力豚鼠的DCN梭形细胞层注入mAChR拮抗剂阿托品来阻断mAChRs的作用。注入阿托品会导致自发放电率降低,以及梭形细胞放电活动的同步性增加。与在耳鸣动物中观察到的StTDP改变一致,注入阿托品会诱导StTDP平均群体学习规则从Hebbian模式转变为反Hebbian模式的主导模式。保持初始Hebbian学习规则的神经元在StTDP中向更兴奋的变化转变,而具有初始抑制性学习规则的神经元则转变为Hebbian模式。总之,这些结果表明毒蕈碱胆碱能调制是控制体内梭形细胞基线活动和可塑性的一个因素,提示其在与耳鸣病理相关的适应性不良可塑性中起核心作用。本研究首次采用将阿托品直接注入背侧耳蜗核梭形细胞层的新方法,并同时记录神经活动,以阐明毒蕈碱型乙酰胆碱受体(mAChRs)对体内梭形细胞基线活动和听觉-体感可塑性的作用。我们确定阻断mAChRs会增加整个梭形细胞群体放电活动的同步性,并诱导其刺激时间依赖性可塑性的主导性反转模式。这些改变与先前耳鸣研究中确定的类似变化一致,表明mAChRs可能在介导与耳鸣病理相关的适应性不良改变中起关键作用。阻断mAChRs还导致梭形细胞自发放电率降低,这与它们在耳鸣中的活动亢进相反,表明胆碱能和GABA能系统之间相互作用的变化也可能是耳鸣病理的一个潜在因素。