Stephenson School of Biomedical Engineering, University of Oklahoma , Norman, Oklahoma 73019, United States.
Langmuir. 2017 Jan 10;33(1):206-218. doi: 10.1021/acs.langmuir.6b03529. Epub 2016 Dec 22.
One of the grand challenges in translational regenerative medicine is the surgical placement of biomaterials. For bone regeneration in particular, malleable and injectable colloidal gelsare frequently designed to exhibit self-assembling and shear-response behavior which facilitates biomaterial placement in tissue defects. The current study demonstrated that by combining native extracellular matrix (ECM) microparticles, i.e., demineralized bone matrix (DBM) and decellularized cartilage (DCC), with hyaluronic acid (HA) and hydroxyapatite (HAP) nanoparticles, a viscoelastic colloidal gel consisting exclusively of natural materials was achieved. Rheological testing of HA-ECM suspensions and HA-HAP-ECM colloidal gels concluded either equivalent or substantially higher storage moduli (G' ≈ 100-10 000 Pa), yield stresses (τ ≈ 100-1000 Pa), and viscoelastic recoveries (G' ≥ 87%) in comparison with controls formulated without ECM, which indicated a previously unexplored synergy in fluid properties between ECM microparticles and HA-HAP colloidal networks. Notable rheological differences were observed between respective DBM and DCC formulations, specifically in HA-HAP-DBM mixtures, which displayed a mean 3-fold increase in G' and a mean 4-fold increase in τ from corresponding DCC mixtures. An initial in vitro assessment of these potential tissue fillers as substrates for cell growth revealed that all formulations of HA-ECM and HA-HAP-ECM showed no signs of cytotoxicity and appeared to promote cell viability. Both DBM and DCC colloidal gels represent promising platforms for future studies in bone and cartilage tissue engineering. Overall, the current study identified colloidal gels constructed exclusively of natural materials, with viscoelastic properties that may facilitate surgical placement for a wide variety of therapeutic applications.
在转化再生医学的重大挑战之一是生物材料的外科放置。特别是对于骨再生,可变形和可注射的胶体凝胶经常被设计为表现出自组装和剪切响应行为,这有利于生物材料在组织缺陷中的放置。本研究表明,通过将天然细胞外基质(ECM)微粒(即脱矿骨基质(DBM)和去细胞软骨(DCC))与透明质酸(HA)和羟基磷灰石(HAP)纳米颗粒结合,可以实现仅由天然材料组成的粘弹性胶体凝胶。HA-ECM 悬浮液和 HA-HAP-ECM 胶体凝胶的流变学测试得出结论,与不含 ECM 的对照制剂相比,无论是等效的还是显著更高的储能模量(G'≈100-10000 Pa)、屈服应力(τ≈100-1000 Pa)和粘弹性恢复(G'≥87%),这表明 ECM 微粒和 HA-HAP 胶体网络之间在流体特性方面存在以前未探索到的协同作用。在各自的 DBM 和 DCC 制剂之间观察到显著的流变学差异,特别是在 HA-HAP-DBM 混合物中,与相应的 DCC 混合物相比,G'平均增加了 3 倍,τ 平均增加了 4 倍。对这些潜在的组织填充物作为细胞生长底物的初步体外评估表明,HA-ECM 和 HA-HAP-ECM 的所有制剂均没有细胞毒性迹象,并且似乎促进了细胞活力。DBM 和 DCC 胶体凝胶均代表了骨和软骨组织工程中未来研究的有前途的平台。总体而言,本研究确定了仅由天然材料构成的胶体凝胶,其粘弹性特性可能有助于各种治疗应用的手术放置。