Suppr超能文献

饮食限制与寿命:来自无脊椎动物模型的经验教训。

Dietary restriction and lifespan: Lessons from invertebrate models.

作者信息

Kapahi Pankaj, Kaeberlein Matt, Hansen Malene

机构信息

Buck Institute for Research on Aging, Novato, CA, USA.

Department of Pathology, University of Washington, Seattle, WA, USA.

出版信息

Ageing Res Rev. 2017 Oct;39:3-14. doi: 10.1016/j.arr.2016.12.005. Epub 2016 Dec 19.

Abstract

Dietary restriction (DR) is the most robust environmental manipulation known to increase active and healthy lifespan in many species. Despite differences in the protocols and the way DR is carried out in different organisms, conserved relationships are emerging among multiple species. Elegant studies from numerous model organisms are further defining the importance of various nutrient-signaling pathways including mTOR (mechanistic target of rapamycin), insulin/IGF-1-like signaling and sirtuins in mediating the effects of DR. We here review current advances in our understanding of the molecular mechanisms altered by DR to promote lifespan in three major invertebrate models, the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster.

摘要

饮食限制(DR)是已知的在许多物种中能延长活跃且健康寿命的最有效的环境干预手段。尽管在不同生物体中饮食限制的方案和实施方式存在差异,但多个物种之间正在出现一些保守的关系。来自众多模式生物的精妙研究进一步明确了包括mTOR(雷帕霉素作用靶点)、胰岛素/胰岛素样生长因子-1信号通路和沉默调节蛋白等各种营养信号通路在介导饮食限制作用方面的重要性。我们在此综述了在三种主要无脊椎动物模型(芽殖酵母酿酒酵母、线虫秀丽隐杆线虫和果蝇黑腹果蝇)中,关于饮食限制改变分子机制以促进寿命延长的当前研究进展。

相似文献

1
Dietary restriction and lifespan: Lessons from invertebrate models.
Ageing Res Rev. 2017 Oct;39:3-14. doi: 10.1016/j.arr.2016.12.005. Epub 2016 Dec 19.
2
Key proteins and pathways that regulate lifespan.
J Biol Chem. 2017 Apr 21;292(16):6452-6460. doi: 10.1074/jbc.R116.771915. Epub 2017 Mar 6.
3
Drosophila lifespan control by dietary restriction independent of insulin-like signaling.
Aging Cell. 2008 Mar;7(2):199-206. doi: 10.1111/j.1474-9726.2008.00373.x. Epub 2008 Jan 21.
4
Dietary deprivation extends lifespan in Caenorhabditis elegans.
Aging Cell. 2006 Dec;5(6):515-24. doi: 10.1111/j.1474-9726.2006.00241.x. Epub 2006 Nov 10.
5
AMPK as a Pro-longevity Target.
Exp Suppl. 2016;107:227-256. doi: 10.1007/978-3-319-43589-3_10.
6
Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila.
Nature. 2011 Sep 21;477(7365):482-5. doi: 10.1038/nature10296.
7
Caloric restriction and its mimetics.
BMB Rep. 2013 Apr;46(4):181-7. doi: 10.5483/bmbrep.2013.46.4.033.
9
Nutrient control of Drosophila longevity.
Trends Endocrinol Metab. 2014 Oct;25(10):509-17. doi: 10.1016/j.tem.2014.02.006. Epub 2014 Mar 28.
10
Lessons from C. elegans: signaling pathways for longevity.
Trends Endocrinol Metab. 2012 Dec;23(12):637-44. doi: 10.1016/j.tem.2012.07.007. Epub 2012 Aug 30.

引用本文的文献

1
Circadian clock and its effect on aging and lifespan.
Biogerontology. 2025 Jun 27;26(4):132. doi: 10.1007/s10522-025-10281-4.
2
Compensatory evolution to DNA replication stress is robust to nutrient availability.
Mol Syst Biol. 2025 Jun 26. doi: 10.1038/s44320-025-00127-z.
3
Mitochondrial dysfunction in the regulation of aging and aging-related diseases.
Cell Commun Signal. 2025 Jun 19;23(1):290. doi: 10.1186/s12964-025-02308-7.
4
Time-Restricted Feeding Promotes Longevity and Gut Health Without Fitness Trade-Offs.
FASEB J. 2025 May 31;39(10):e70627. doi: 10.1096/fj.202500875R.
5
Klotho in age-related cardiovascular diseases: Insights into mitochondrial dysfunction and cell death.
Int J Cardiol Heart Vasc. 2025 Mar 8;57:101629. doi: 10.1016/j.ijcha.2025.101629. eCollection 2025 Apr.
7
Caloric Restriction Attenuated Nerve Damages Mediated Through SIRT-1-a Study Using Nerve Crush Injury Model in Rats.
Mol Neurobiol. 2025 Jul;62(7):8261-8278. doi: 10.1007/s12035-025-04786-9. Epub 2025 Feb 24.
9
Novel TORC1 inhibitor Ecl1 is regulated by phosphorylation in fission yeast.
Aging Cell. 2025 Apr;24(4):e14450. doi: 10.1111/acel.14450. Epub 2025 Feb 5.

本文引用的文献

2
Intestinal Autophagy Improves Healthspan and Longevity in C. elegans during Dietary Restriction.
PLoS Genet. 2016 Jul 14;12(7):e1006135. doi: 10.1371/journal.pgen.1006135. eCollection 2016 Jul.
3
The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging.
Cell Metab. 2016 Jun 14;23(6):990-1003. doi: 10.1016/j.cmet.2016.05.009.
4
Gene-nutrient interaction markedly influences yeast chronological lifespan.
Exp Gerontol. 2016 Dec 15;86:113-123. doi: 10.1016/j.exger.2016.04.012. Epub 2016 Apr 25.
5
Inhibition of the Mechanistic Target of Rapamycin (mTOR)-Rapamycin and Beyond.
Cold Spring Harb Perspect Med. 2016 May 2;6(5):a025924. doi: 10.1101/cshperspect.a025924.
6
A chromatin modifier integrates insulin/IGF-1 signalling and dietary restriction to regulate longevity.
Aging Cell. 2016 Aug;15(4):694-705. doi: 10.1111/acel.12477. Epub 2016 Apr 2.
7
Microfluidic technologies for yeast replicative lifespan studies.
Mech Ageing Dev. 2017 Jan;161(Pt B):262-269. doi: 10.1016/j.mad.2016.03.009. Epub 2016 Mar 23.
8
A Systems Approach to Reverse Engineer Lifespan Extension by Dietary Restriction.
Cell Metab. 2016 Mar 8;23(3):529-40. doi: 10.1016/j.cmet.2016.02.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验