Arellano April Moreno, Dai Wenrui, Wang Shuang, Jiang Xiaoqian, Ohno-Machado Lucila
Department of Biomedical Informatics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
Annu Rev Biomed Data Sci. 2018 Jul;1:115-129. doi: 10.1146/annurev-biodatasci-080917-013416.
Privacyis an important consideration when sharing clinical data, which often contain sensitive information. Adequate protection to safeguard patient privacy and to increase public trust in biomedical research is paramount. This review covers topics in policy and technology in the context of clinical data sharing. We review policy articles related to () the Common Rule, HIPAA privacy and security rules, and governance; () patients' viewpoints and consent practices; and () research ethics. We identify key features of the revised Common Rule and the most notable changes since its previous version. We address data governance for research in addition to the increasing emphasis on ethical and social implications. Research ethics topics include data sharing best practices, use of data from populations of low socioeconomic status (SES), recent updates to institutional review board (IRB) processes to protect human subjects' data, and important concerns about the limitations of current policies to address data deidentification. In terms of technology, we focus on articles that have applicability in real world health care applications: deidentification methods that comply with HIPAA, data anonymization approaches to satisfy well-acknowledged issues in deidentified data, encryption methods to safeguard data analyses, and privacy-preserving predictive modeling. The first two technology topics are mostly relevant to methodologies that attempt to sanitize structured or unstructured data. The third topic includes analysis on encrypted data. The last topic includes various mechanisms to build statistical models without sharing raw data.
在共享临床数据时,隐私是一个重要的考量因素,因为临床数据通常包含敏感信息。提供充分的保护以维护患者隐私并增强公众对生物医学研究的信任至关重要。本综述涵盖临床数据共享背景下的政策和技术主题。我们回顾了与以下方面相关的政策文章:()《共同规则》、《健康保险流通与责任法案》隐私和安全规则以及治理;()患者的观点和同意做法;以及()研究伦理。我们确定了修订后的《共同规则》的关键特征以及自其先前版本以来最显著的变化。除了日益强调伦理和社会影响之外,我们还探讨了研究数据治理。研究伦理主题包括数据共享最佳实践、来自社会经济地位(SES)较低人群数据的使用、机构审查委员会(IRB)保护人类受试者数据流程的最新更新,以及对当前数据去识别政策局限性的重要关注。在技术方面,我们关注在现实世界医疗保健应用中具有适用性的文章:符合《健康保险流通与责任法案》的去识别方法、解决去识别数据中公认问题的数据匿名化方法、保护数据分析的加密方法以及隐私保护预测建模。前两个技术主题主要与试图净化结构化或非结构化数据的方法相关。第三个主题包括对加密数据的分析。最后一个主题包括在不共享原始数据的情况下构建统计模型的各种机制。