Suppr超能文献

我的电子健康记录隐私保护足够吗?事件级隐私保护。

Are My EHRs Private Enough? Event-Level Privacy Protection.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):103-112. doi: 10.1109/TCBB.2018.2850037. Epub 2018 Jun 25.

Abstract

Privacy is a major concern in sharing human subject data to researchers for secondary analyses. A simple binary consent (opt-in or not) may significantly reduce the amount of sharable data, since many patients might only be concerned about a few sensitive medical conditions rather than the entire medical records. We propose event-level privacy protection, and develop a feature ablation method to protect event-level privacy in electronic medical records. Using a list of 13 sensitive diagnoses, we evaluate the feasibility and the efficacy of the proposed method. As feature ablation progresses, the identifiability of a sensitive medical condition decreases with varying speeds on different diseases. We find that these sensitive diagnoses can be divided into three categories: (1) five diseases have fast declining identifiability (AUC below 0.6 with less than 400 features excluded); (2) seven diseases with progressively declining identifiability (AUC below 0.7 with between 200 and 700 features excluded); and (3) one disease with slowly declining identifiability (AUC above 0.7 with 1,000 features excluded). The fact that the majority (12 out of 13) of the sensitive diseases fall into the first two categories suggests the potential of the proposed feature ablation method as a solution for event-level record privacy protection.

摘要

在将人类受试者数据共享给研究人员进行二次分析时,隐私是一个主要关注点。简单的二元同意(加入或不加入)可能会显著减少可共享数据的数量,因为许多患者可能只关心少数敏感的医疗状况,而不是整个医疗记录。我们提出了事件级别的隐私保护,并开发了一种特征消除方法来保护电子病历中的事件级别的隐私。使用 13 个敏感诊断列表,我们评估了该方法的可行性和效果。随着特征消除的进行,不同疾病的敏感医疗状况的可识别性以不同的速度下降。我们发现这些敏感诊断可以分为三类:(1)五种疾病的可识别性迅速下降(排除 400 个特征后 AUC 低于 0.6);(2)七种疾病的可识别性逐渐下降(排除 200 到 700 个特征后 AUC 低于 0.7);(3)一种疾病的可识别性缓慢下降(排除 1000 个特征后 AUC 高于 0.7)。大多数(13 个中有 12 个)敏感疾病属于前两类,这表明所提出的特征消除方法作为事件级记录隐私保护的解决方案具有潜力。

相似文献

1
Are My EHRs Private Enough? Event-Level Privacy Protection.我的电子健康记录隐私保护足够吗?事件级隐私保护。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):103-112. doi: 10.1109/TCBB.2018.2850037. Epub 2018 Jun 25.

本文引用的文献

3
Partitioning-based mechanisms under personalized differential privacy.基于分区的个性化差分隐私机制。
Adv Knowl Discov Data Min. 2017 May;10234:615-627. doi: 10.1007/978-3-319-57454-7_48. Epub 2017 Apr 23.
7
Differentially Private Frequent Subgraph Mining.差分隐私频繁子图挖掘
Proc Int Conf Data Eng. 2016 May;2016:229-240. doi: 10.1109/ICDE.2016.7498243. Epub 2016 Jun 23.
8
Using Machine Learning to Predict Laboratory Test Results.使用机器学习预测实验室检测结果。
Am J Clin Pathol. 2016 Jun;145(6):778-88. doi: 10.1093/ajcp/aqw064. Epub 2016 Jun 21.
10
Tensor factorization toward precision medicine.面向精准医学的张量分解
Brief Bioinform. 2017 May 1;18(3):511-514. doi: 10.1093/bib/bbw026.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验