Suppr超能文献

无粘结剂硫/还原氧化石墨烯气凝胶作为高性能锂硫电池电极材料。

A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries.

机构信息

Department of Physics, Division of Condensed Matter Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

Department of Chemistry and Chemical Engineering, Division of Applied Chemistry, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

出版信息

Sci Rep. 2016 Dec 23;6:39615. doi: 10.1038/srep39615.

Abstract

Societies' increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of "no battery without binder" and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

摘要

社会对储能的需求不断增加,这使得我们有必要探索超越传统锂离子电池的新概念。一种很有前途的候选技术是锂硫技术,它有可能将电池的能量密度提高 3-5 倍。然而,到目前为止,锂硫系统的许多问题还没有得到满意的解决。在这里,我们报告了一种新的方法,利用自支撑的还原氧化石墨烯基气凝胶直接作为电极,即无需进一步加工,也无需添加粘合剂或导电剂。我们可以打破“没有粘合剂就没有电池”的普遍观念,并为具有高实际能量密度的锂硫电池铺平道路。气凝胶是通过一锅法合成的,由超过 2/3 的硫组成,包含在多孔的少层还原氧化石墨烯基质中。通过将基于石墨烯的气凝胶阴极与电解质和锂金属阳极结合,我们展示了一种具有高面容量(超过 75 次循环后超过 3 mAh/cm2)、200 次循环以上出色的容量保持率和良好的硫利用率的锂硫电池。基于这种性能,我们估计这种概念电池的能量密度可以显著超过美国能源部(DOE)为运输应用设定的 2020 年目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f85/5180228/0b63c8378482/srep39615-f1.jpg

相似文献

2
A Lithium-Ion Battery using a 3 D-Array Nanostructured Graphene-Sulfur Cathode and a Silicon Oxide-Based Anode.
ChemSusChem. 2018 May 9;11(9):1512-1520. doi: 10.1002/cssc.201800242. Epub 2018 Apr 18.
3
Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
ACS Nano. 2017 May 23;11(5):4801-4807. doi: 10.1021/acsnano.7b01172. Epub 2017 May 12.
4
Effect of Boron-Doping on the Graphene Aerogel Used as Cathode for the Lithium-Sulfur Battery.
ACS Appl Mater Interfaces. 2015 Nov 18;7(45):25202-10. doi: 10.1021/acsami.5b08129. Epub 2015 Nov 6.
5
Multidimensional Polycation β-Cyclodextrin Polymer as an Effective Aqueous Binder for High Sulfur Loading Cathode in Lithium-Sulfur Batteries.
ACS Appl Mater Interfaces. 2015 Dec 2;7(47):26257-65. doi: 10.1021/acsami.5b08537. Epub 2015 Nov 17.
8
Integrated Polypyrrole@Sulfur@Graphene Aerogel 3D Architecture via Advanced Vapor Polymerization for High-Performance Lithium-Sulfur Batteries.
ACS Appl Mater Interfaces. 2019 May 22;11(20):18448-18455. doi: 10.1021/acsami.9b04167. Epub 2019 May 8.
9
Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.
ACS Nano. 2013 Jun 25;7(6):5367-75. doi: 10.1021/nn401228t. Epub 2013 May 16.

引用本文的文献

本文引用的文献

1
3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li-S Batteries.
Adv Mater. 2016 May;28(17):3374-82. doi: 10.1002/adma.201506014. Epub 2016 Mar 2.
4
Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures.
Nanoscale. 2014 Feb 21;6(4):1922-45. doi: 10.1039/c3nr04555b. Epub 2013 Dec 3.
5
Lithium-sulfur batteries: electrochemistry, materials, and prospects.
Angew Chem Int Ed Engl. 2013 Dec 9;52(50):13186-200. doi: 10.1002/anie.201304762. Epub 2013 Nov 14.
6
Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.
ACS Nano. 2013 Jun 25;7(6):5367-75. doi: 10.1021/nn401228t. Epub 2013 May 16.
7
Biomimetic superelastic graphene-based cellular monoliths.
Nat Commun. 2012;3:1241. doi: 10.1038/ncomms2251.
8
Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries.
Chemistry. 2013 Jan 14;19(3):1013-9. doi: 10.1002/chem.201202127. Epub 2012 Nov 23.
9
Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors.
Adv Mater. 2012 Sep 25;24(37):5130-5. doi: 10.1002/adma.201201948. Epub 2012 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验