Suppr超能文献

仿生超弹性基于石墨烯的多孔整体材料。

Biomimetic superelastic graphene-based cellular monoliths.

机构信息

Department of Materials Engineering, Monash University, Clayton Campus, Clayton, Victoria 3800, Australia.

出版信息

Nat Commun. 2012;3:1241. doi: 10.1038/ncomms2251.

Abstract

Many applications proposed for graphene require multiple sheets be assembled into a monolithic structure. The ability to maintain structural integrity upon large deformation is essential to ensure a macroscopic material which functions reliably. However, it has remained a great challenge to achieve high elasticity in three-dimensional graphene networks. Here we report that the marriage of graphene chemistry with ice physics can lead to the formation of ultralight and superelastic graphene-based cellular monoliths. Mimicking the hierarchical structure of natural cork, the resulting materials can sustain their structural integrity under a load of >50,000 times their own weight and can rapidly recover from >80% compression. The unique biomimetic hierarchical structure also provides this new class of elastomers with exceptionally high energy absorption capability and good electrical conductivity. The successful synthesis of such fascinating materials paves the way to explore the application of graphene in a self-supporting, structurally adaptive and 3D macroscopic form.

摘要

许多应用于石墨烯的方案都需要将多张薄片组装成整体结构。在大变形的情况下保持结构完整性的能力对于确保可靠运行的宏观材料至关重要。然而,在三维石墨烯网络中实现高弹性仍然是一个巨大的挑战。在这里,我们报告说,石墨烯化学与冰物理的结合可以导致形成超轻和超弹性的基于石墨烯的多孔单体。模仿天然软木的分层结构,所得到的材料可以在超过其自身重量 50000 倍的负载下保持其结构完整性,并可以从超过 80%的压缩中迅速恢复。这种独特的仿生分层结构还为这种新型弹性体提供了极高的能量吸收能力和良好的导电性。这种迷人材料的成功合成为探索石墨烯在自支撑、结构自适应和 3D 宏观形式中的应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验