Suppr超能文献

由于蛋白质重组导致的结合自由能敏感性。

Sensitivity in Binding Free Energies Due to Protein Reorganization.

作者信息

Lim Nathan M, Wang Lingle, Abel Robert, Mobley David L

机构信息

Schrödinger, Inc. , 120 West 45th Street, New York, New York 10036, United States.

出版信息

J Chem Theory Comput. 2016 Sep 13;12(9):4620-31. doi: 10.1021/acs.jctc.6b00532. Epub 2016 Aug 16.

Abstract

Tremendous recent improvements in computer hardware, coupled with advances in sampling techniques and force fields, are now allowing protein-ligand binding free energy calculations to be routinely used to aid pharmaceutical drug discovery projects. However, despite these recent innovations, there are still needs for further improvement in sampling algorithms to more adequately sample protein motion relevant to protein-ligand binding. Here, we report our work identifying and studying such clear and remaining needs in the apolar cavity of T4 lysozyme L99A. In this study, we model recent experimental results that show the progressive opening of the binding pocket in response to a series of homologous ligands.1 Even while using enhanced sampling techniques, we demonstrate that the predicted relative binding free energies (RBFE) are sensitive to the initial protein conformational state. Particularly, we highlight the importance of sufficient sampling of protein conformational changes and demonstrate how inclusion of three key protein residues in the "hot" region of the FEP/REST simulation improves the sampling and resolves this sensitivity, given enough simulation time.

摘要

近年来计算机硬件的巨大进步,再加上采样技术和力场的发展,现在使得蛋白质-配体结合自由能计算能够常规用于辅助药物研发项目。然而,尽管有这些最新的创新,采样算法仍有进一步改进的需求,以便更充分地采样与蛋白质-配体结合相关的蛋白质运动。在此,我们报告我们在T4溶菌酶L99A的非极性腔中识别和研究此类明显且尚存的需求的工作。在本研究中,我们对最近的实验结果进行建模,这些结果表明结合口袋会响应一系列同源配体而逐渐打开。即使使用增强采样技术,我们也证明预测的相对结合自由能(RBFE)对初始蛋白质构象状态敏感。特别地,我们强调了对蛋白质构象变化进行充分采样的重要性,并展示了在FEP/REST模拟的“热点”区域纳入三个关键蛋白质残基如何在有足够模拟时间的情况下改善采样并解决这种敏感性。

相似文献

1
Sensitivity in Binding Free Energies Due to Protein Reorganization.
J Chem Theory Comput. 2016 Sep 13;12(9):4620-31. doi: 10.1021/acs.jctc.6b00532. Epub 2016 Aug 16.
2
Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
J Chem Inf Model. 2017 Dec 26;57(12):2911-2937. doi: 10.1021/acs.jcim.7b00564. Epub 2017 Dec 15.
3
Protein-ligand binding free energies from exhaustive docking.
J Phys Chem B. 2012 Jun 14;116(23):6872-9. doi: 10.1021/jp212646s. Epub 2012 Apr 2.
4
A model binding site for testing scoring functions in molecular docking.
J Mol Biol. 2002 Sep 13;322(2):339-55. doi: 10.1016/s0022-2836(02)00777-5.
5
Enhanced Monte Carlo Methods for Modeling Proteins Including Computation of Absolute Free Energies of Binding.
J Chem Theory Comput. 2018 Jun 12;14(6):3279-3288. doi: 10.1021/acs.jctc.8b00031. Epub 2018 May 8.
7
Reduced Free Energy Perturbation/Hamiltonian Replica Exchange Molecular Dynamics Method with Unbiased Alchemical Thermodynamic Axis.
J Phys Chem B. 2018 Oct 18;122(41):9435-9442. doi: 10.1021/acs.jpcb.8b03277. Epub 2018 Oct 3.
8
Fragment-based computation of binding free energies by systematic sampling.
J Chem Inf Model. 2009 Aug;49(8):1901-13. doi: 10.1021/ci900132r.
9
Protein-Ligand Binding Free Energy Calculations with FEP.
Methods Mol Biol. 2019;2022:201-232. doi: 10.1007/978-1-4939-9608-7_9.
10
How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
J Chem Theory Comput. 2015 Jun 9;11(6):2670-9. doi: 10.1021/acs.jctc.5b00214.

引用本文的文献

1
2
Quantification of the Impact of Structure Quality on Predicted Binding Free Energy Accuracy.
J Chem Inf Model. 2025 Jul 14;65(13):6927-6938. doi: 10.1021/acs.jcim.5c00947. Epub 2025 Jun 29.
3
Estimation of Absolute Binding Free Energies for Drugs That Bind Multiple Proteins.
J Chem Inf Model. 2025 Apr 14;65(7):3431-3438. doi: 10.1021/acs.jcim.4c01555. Epub 2025 Mar 31.
4
Kinetics-Based State Definitions for Discrete Binding Conformations of T4 L99A in MD via Markov State Modeling.
J Chem Inf Model. 2024 Dec 9;64(23):8870-8879. doi: 10.1021/acs.jcim.4c01364. Epub 2024 Nov 26.
5
Impact of protein conformations on binding free energy calculations in the beta-secretase 1 system.
J Comput Chem. 2024 Sep 5;45(23):2024-2033. doi: 10.1002/jcc.27365. Epub 2024 May 9.
6
Accurate prediction of dynamic protein-ligand binding using P-score ranking.
J Comput Chem. 2024 Jul 30;45(20):1762-1778. doi: 10.1002/jcc.27370. Epub 2024 Apr 22.
7
The SAMPL9 host-guest blind challenge: an overview of binding free energy predictive accuracy.
Phys Chem Chem Phys. 2024 Mar 20;26(12):9207-9225. doi: 10.1039/d3cp05111k.
9
Conformational Selectivity of ITK Inhibitors: Insights from Molecular Dynamics Simulations.
J Chem Inf Model. 2023 Dec 25;63(24):7860-7872. doi: 10.1021/acs.jcim.3c01352. Epub 2023 Dec 9.
10
Identifying and Overcoming the Sampling Challenges in Relative Binding Free Energy Calculations of a Model Protein:Protein Complex.
J Chem Theory Comput. 2023 Aug 8;19(15):4863-4882. doi: 10.1021/acs.jctc.3c00333. Epub 2023 Jul 14.

本文引用的文献

1
Calculation of Standard Binding Free Energies:  Aromatic Molecules in the T4 Lysozyme L99A Mutant.
J Chem Theory Comput. 2006 Sep;2(5):1255-73. doi: 10.1021/ct060037v.
2
Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field.
J Chem Theory Comput. 2010 May 11;6(5):1509-19. doi: 10.1021/ct900587b. Epub 2010 Apr 14.
3
Modeling Local Structural Rearrangements Using FEP/REST: Application to Relative Binding Affinity Predictions of CDK2 Inhibitors.
J Chem Theory Comput. 2013 Feb 12;9(2):1282-93. doi: 10.1021/ct300911a. Epub 2013 Jan 30.
4
Binding Free Energy Calculations for Lead Optimization: Assessment of Their Accuracy in an Industrial Drug Design Context.
J Chem Theory Comput. 2014 Aug 12;10(8):3331-44. doi: 10.1021/ct5000296. Epub 2014 Jun 24.
5
Practical Aspects of Free-Energy Calculations: A Review.
J Chem Theory Comput. 2014 Jul 8;10(7):2632-47. doi: 10.1021/ct500161f. Epub 2014 Jun 6.
6
OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.
J Chem Theory Comput. 2016 Jan 12;12(1):281-96. doi: 10.1021/acs.jctc.5b00864. Epub 2015 Dec 1.
7
How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
J Chem Theory Comput. 2015 Jun 9;11(6):2670-9. doi: 10.1021/acs.jctc.5b00214.
8
Homologous ligands accommodated by discrete conformations of a buried cavity.
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5039-44. doi: 10.1073/pnas.1500806112. Epub 2015 Apr 6.
10
Computational study of the "DFG-flip" conformational transition in c-Abl and c-Src tyrosine kinases.
J Phys Chem B. 2015 Jan 29;119(4):1443-56. doi: 10.1021/jp511792a. Epub 2015 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验