Suppr超能文献

远端和近端启动子共同调控铜绿假单胞菌中pqsR的表达。

Distal and proximal promoters co-regulate pqsR expression in Pseudomonas aeruginosa.

作者信息

Farrow John M, Pesci Everett C

机构信息

Department of Microbiology and Immunology, The Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA.

出版信息

Mol Microbiol. 2017 Apr;104(1):78-91. doi: 10.1111/mmi.13611. Epub 2017 Jan 26.

Abstract

The ubiquitous bacterium Pseudomonas aeruginosa is an opportunistic pathogen that can cause serious infections in immunocompromised individuals. P. aeruginosa virulence is controlled partly by intercellular communication, and the transcription factor PqsR is a necessary component in the P. aeruginosa cell-to-cell signaling network. PqsR acts as the receptor for the Pseudomonas quinolone signal, and it controls the production of 2-alkyl-4-quinolone molecules which are important for pathogenicity. Previous studies showed that the expression of pqsR is positively controlled by the quorum-sensing regulator LasR, but it was unclear how LasR is able to induce pqsR transcription. In this report, we further investigated the control of pqsR, and discovered two separate promoter sites that contribute to pqsR expression. LasR-mediated activation occurs at the distal promoter site, but this activation can be antagonized by the regulator CysB. The proximal promoter site also contributes to pqsR transcription, but initiation at this site is inhibited by a negative regulatory sequence element, and potentially by the H-NS family members MvaT and MvaU. We propose a model where positive and negative regulatory influences at each promoter site are integrated to modify pqsR expression. This arrangement could allow for information from both environmental signals and cell-to-cell communication to influence PqsR levels.

摘要

无处不在的细菌铜绿假单胞菌是一种机会致病菌,可在免疫功能低下的个体中引起严重感染。铜绿假单胞菌的毒力部分受细胞间通讯控制,转录因子PqsR是铜绿假单胞菌细胞间信号网络的必要组成部分。PqsR作为假单胞菌喹诺酮信号的受体,控制对致病性很重要的2-烷基-4-喹诺酮分子的产生。先前的研究表明,pqsR的表达受群体感应调节因子LasR的正向调控,但尚不清楚LasR如何诱导pqsR转录。在本报告中,我们进一步研究了pqsR的调控,发现了两个独立的启动子位点,它们有助于pqsR的表达。LasR介导的激活发生在远端启动子位点,但这种激活可被调节因子CysB拮抗。近端启动子位点也有助于pqsR转录,但该位点的起始受负调控序列元件以及可能受H-NS家族成员MvaT和MvaU的抑制。我们提出了一个模型,其中每个启动子位点的正向和负向调控影响被整合以调节pqsR的表达。这种安排可以使来自环境信号和细胞间通讯的信息都影响PqsR的水平。

相似文献

1
Distal and proximal promoters co-regulate pqsR expression in Pseudomonas aeruginosa.
Mol Microbiol. 2017 Apr;104(1):78-91. doi: 10.1111/mmi.13611. Epub 2017 Jan 26.
2
CysB Negatively Affects the Transcription of pqsR and Pseudomonas Quinolone Signal Production in Pseudomonas aeruginosa.
J Bacteriol. 2015 Jun 15;197(12):1988-2002. doi: 10.1128/JB.00246-15. Epub 2015 Apr 6.
3
Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa.
J Bacteriol. 2005 Jul;187(13):4372-80. doi: 10.1128/JB.187.13.4372-4380.2005.
6
The third quorum-sensing system of : quinolone signal and the enigmatic PqsE protein.
J Med Microbiol. 2020 Jan;69(1):25-34. doi: 10.1099/jmm.0.001116.
8
Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS).
FEMS Microbiol Lett. 2004 Jan 15;230(1):27-34. doi: 10.1016/S0378-1097(03)00849-8.
9
Growth phase-differential quorum sensing regulation of anthranilate metabolism in Pseudomonas aeruginosa.
Mol Cells. 2011 Jul;32(1):57-65. doi: 10.1007/s10059-011-2322-6. Epub 2011 May 23.
10

引用本文的文献

1
Temperature controls LasR regulation of expression in .
mBio. 2025 Jun 11;16(6):e0054125. doi: 10.1128/mbio.00541-25. Epub 2025 May 20.
2
LasR regulates protease IV expression at suboptimal growth temperatures in .
bioRxiv. 2024 Jun 28:2024.06.27.601069. doi: 10.1101/2024.06.27.601069.
3
Polymicrobial infections can select against Pseudomonas aeruginosa mutators because of quorum-sensing trade-offs.
Nat Ecol Evol. 2022 Jul;6(7):979-988. doi: 10.1038/s41559-022-01768-1. Epub 2022 May 26.
4
Rhamnolipids produced by Pseudomonas: from molecular genetics to the market.
Microb Biotechnol. 2021 Jan;14(1):136-146. doi: 10.1111/1751-7915.13700. Epub 2020 Nov 5.
5
Potential of the Complex to Produce 4-Hydroxy-3-Methyl-2-Alkyquinolines.
Front Cell Infect Microbiol. 2019 Feb 28;9:33. doi: 10.3389/fcimb.2019.00033. eCollection 2019.
6
PsrA controls the synthesis of the Pseudomonas aeruginosa quinolone signal via repression of the FadE homolog, PA0506.
PLoS One. 2017 Dec 8;12(12):e0189331. doi: 10.1371/journal.pone.0189331. eCollection 2017.

本文引用的文献

1
PqsE of Pseudomonas aeruginosa Acts as Pathway-Specific Thioesterase in the Biosynthesis of Alkylquinolone Signaling Molecules.
Chem Biol. 2015 May 21;22(5):611-8. doi: 10.1016/j.chembiol.2015.04.012. Epub 2015 May 7.
2
CysB Negatively Affects the Transcription of pqsR and Pseudomonas Quinolone Signal Production in Pseudomonas aeruginosa.
J Bacteriol. 2015 Jun 15;197(12):1988-2002. doi: 10.1128/JB.00246-15. Epub 2015 Apr 6.
5
Interspecies interaction between Pseudomonas aeruginosa and other microorganisms.
Microbes Environ. 2013;28(1):13-24. doi: 10.1264/jsme2.me12167. Epub 2013 Jan 30.
7
A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence.
Nucleic Acids Res. 2013 Jan 7;41(1):1-20. doi: 10.1093/nar/gks1039. Epub 2012 Nov 11.
8
Treatment of lung infection in patients with cystic fibrosis: current and future strategies.
J Cyst Fibros. 2012 Dec;11(6):461-79. doi: 10.1016/j.jcf.2012.10.004. Epub 2012 Nov 6.
9
Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19420-5. doi: 10.1073/pnas.1213901109. Epub 2012 Nov 5.
10
The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature.
PLoS Pathog. 2012 Sep;8(9):e1002945. doi: 10.1371/journal.ppat.1002945. Epub 2012 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验