Department of Clinical Radiology, University Hospital Münster, Münster, Germany.
Department of Clinical Radiology, University Hospital Münster, Münster, Germany.
Neuroimage. 2018 Jan 1;164:144-154. doi: 10.1016/j.neuroimage.2016.12.059. Epub 2016 Dec 21.
The combination of optogenetic control and fMRI readout in the brain is increasingly used to assess neuronal networks and underlying signal processing. However, how exactly optogenetic activation or inhibition reproduces normal physiological input has not been fully unraveled. To assess details of temporal dynamics of the hemodynamic response, temporal resolution in rodent fMRI is often not sufficient. Recent advances in human fMRI using faster acquisition schemes cannot be easily translated to small animals due to smaller dimensions, fast physiological motion, and higher sensitivity to artefacts. Here, we applied a one dimensional line scanning acquisition with 50ms temporal resolution in rat somatosensory cortex. We observed that optogenetic activation reproduces the hemodynamic response upon sensory stimulation, but shows a 160 to 340ms earlier onset of the response. This difference is explained by direct activation of all opsin-expressing and illuminated cortical layers, while hemodynamic response to sensory stimulation is delayed during intracortical transmission between cortical layers. Our results confirm that optogenetic activation is a valid model for physiological neuronal input, and that differences in temporal behavior of only a few hundred milliseconds can be resolved in rodent fMRI.
光遗传学控制与 fMRI 读取技术在大脑中的结合,越来越多地被用于评估神经元网络和潜在的信号处理。然而,光遗传学激活或抑制究竟如何再现正常的生理输入,尚未被完全揭示。为了评估血流动力学反应的时间动态细节,啮齿动物 fMRI 的时间分辨率通常不够。由于较小的尺寸、快速的生理运动和对伪影的更高敏感性,使用更快采集方案的人类 fMRI 的最新进展不能轻易转化为小动物。在这里,我们在大鼠感觉皮层中应用了具有 50ms 时间分辨率的一维线扫描采集。我们观察到,光遗传学激活在感觉刺激时再现了血流动力学反应,但反应的起始时间提前了 160 到 340ms。这种差异是由于所有表达光感受器并被照亮的皮层层的直接激活所解释的,而在皮层层之间的皮层内传递过程中,感觉刺激引起的血流动力学反应是延迟的。我们的结果证实,光遗传学激活是生理神经元输入的有效模型,并且在啮齿动物 fMRI 中可以分辨出仅几百毫秒的时间行为差异。