Suppr超能文献

用于分析有和没有血管壁整合的镁支架模型生物降解的体外血管生物反应器。

Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration.

作者信息

Wang Juan, Liu Lumei, Wu Yifan, Maitz Manfred F, Wang Zhihong, Koo Youngmi, Zhao Ansha, Sankar Jagannathan, Kong Deling, Huang Nan, Yun Yeoheung

机构信息

NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China.

NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA; FIT BEST Laboratory, Department of Chemical, Biological, and Bio Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA.

出版信息

Acta Biomater. 2017 Mar 1;50:546-555. doi: 10.1016/j.actbio.2016.12.039. Epub 2016 Dec 21.

Abstract

UNLABELLED

Current in vitro models fail in predicting the degradation rate and mode of magnesium (Mg) stents in vivo. To overcome this, the microenvironment of the stent is simulated here in an ex vivo bioreactor with porcine aorta and circulating medium, and compared with standard static in vitro immersion and with in vivo rat aorta models. In ex vivo and in vivo conditions, pure Mg wires were exposed to the aortic lumen and inserted into the aortic wall to mimic early- and long-term implantation, respectively. Results showed that: 1) Degradation rates of Mg were similar for all the fluid diffusion conditions (in vitro static, aortic wall ex vivo and in vivo); however, Mg degradation under flow condition (i.e. in the lumen) in vivo was slower than ex vivo; 2) The corrosion mode in the samples can be mainly described as localized (in vitro), mixed localized and uniform (ex vivo), and uniform (in vivo); 3) Abundant degradation products (MgO/Mg(OH) and Ca/P) with gas bubbles accumulated around the localized degradation regions ex vivo, but a uniform and thin degradation product layer was found in vivo. It is concluded that the ex vivo vascular bioreactor provides an improved test setting for magnesium degradation between static immersion and animal experiments and highlights its promising role in bridging degradation behavior and biological response for vascular stent research.

STATEMENT OF SIGNIFICANCE

Magnesium and its alloys are candidates for a new generation of biodegradable stent materials. However, the in vitro degradation of magnesium stents does not match the clinical degradation rates, corrupting the validity of conventional degradation tests. Here we report an ex vivo vascular bioreactor, which allows simulation of the microenvironment with and without blood vessel integration to study the biodegradation of magnesium implants in comparison with standard in vitro test conditions and with in vivo implantations. The bioreactor did simulate the corrosion of an intramural implant very well, but showed too high degradation for non-covered implants. It is concluded that this system is in between static incubation and animal experiments concerning the predictivity of the degradation.

摘要

未标记

当前的体外模型无法预测镁(Mg)支架在体内的降解速率和模式。为克服这一问题,在此利用猪主动脉和循环培养基在体外生物反应器中模拟支架的微环境,并与标准静态体外浸泡以及体内大鼠主动脉模型进行比较。在体外和体内条件下,将纯镁丝分别暴露于主动脉腔和插入主动脉壁,以模拟早期和长期植入。结果表明:1)在所有流体扩散条件下(体外静态、体外主动脉壁和体内),镁的降解速率相似;然而,体内流动条件下(即腔内)镁的降解比体外慢;2)样品中的腐蚀模式主要可描述为局部腐蚀(体外)、局部与均匀混合腐蚀(体外)和均匀腐蚀(体内);3)在体外,大量降解产物(MgO/Mg(OH)和Ca/P)以及气泡在局部降解区域周围积聚,但在体内发现有均匀且薄的降解产物层。结论是,体外血管生物反应器为镁降解提供了一个比静态浸泡和动物实验更好的测试环境,并突出了其在血管支架研究中连接降解行为和生物反应方面的重要作用。

意义声明

镁及其合金是新一代可生物降解支架材料的候选者。然而,镁支架的体外降解与临床降解速率不匹配,损害了传统降解测试的有效性。在此我们报告一种体外血管生物反应器,它能够模拟有无血管整合的微环境,以与标准体外测试条件和体内植入相比较来研究镁植入物的生物降解。该生物反应器确实很好地模拟了壁内植入物的腐蚀,但对于未覆盖的植入物显示出过高的降解。结论是,就降解的预测性而言,该系统介于静态孵育和动物实验之间。

相似文献

1
Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration.
Acta Biomater. 2017 Mar 1;50:546-555. doi: 10.1016/j.actbio.2016.12.039. Epub 2016 Dec 21.
2
Expandable Mg-based Helical Stent Assessment using Static, Dynamic, and Porcine Ex Vivo Models.
Sci Rep. 2017 Apr 26;7(1):1173. doi: 10.1038/s41598-017-01214-4.
3
Flow-induced corrosion behavior of absorbable magnesium-based stents.
Acta Biomater. 2014 Dec;10(12):5213-5223. doi: 10.1016/j.actbio.2014.08.034. Epub 2014 Sep 6.
4
A new in vitro-in vivo correlation for bioabsorbable magnesium stents from mechanical behavior.
Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):5064-70. doi: 10.1016/j.msec.2013.08.042. Epub 2013 Sep 7.
7
Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents.
Med Biol Eng Comput. 2017 Aug;55(8):1261-1275. doi: 10.1007/s11517-016-1584-8. Epub 2016 Oct 26.
8
Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant.
Acta Biomater. 2013 Nov;9(10):8548-60. doi: 10.1016/j.actbio.2012.08.028. Epub 2012 Aug 23.
9
In vivo characterization of magnesium alloy biodegradation using electrochemical H monitoring, ICP-MS, and XPS.
Acta Biomater. 2017 Mar 1;50:556-565. doi: 10.1016/j.actbio.2017.01.024. Epub 2017 Jan 6.
10
Comparison of in Vascular Bioreactors and In Vivo Models of Degradation and Cellular Response of Mg-Zn-Mn Stents.
Ann Biomed Eng. 2021 Jun;49(6):1551-1560. doi: 10.1007/s10439-020-02699-3. Epub 2021 Jan 6.

引用本文的文献

2
Biomimetic Approaches in Scaffold-Based Blood Vessel Tissue Engineering.
Biomimetics (Basel). 2024 Jun 22;9(7):377. doi: 10.3390/biomimetics9070377.
3
Promising Novel Therapies in the Treatment of Aortic and Visceral Aneurysms.
J Clin Med. 2023 Sep 10;12(18):5878. doi: 10.3390/jcm12185878.
5
Biodegradable magnesium materials regulate ROS-RNS balance in pro-inflammatory macrophage environment.
Bioact Mater. 2022 Nov 17;23:261-273. doi: 10.1016/j.bioactmat.2022.10.017. eCollection 2023 May.
6
The Flow-Induced Degradation and Vascular Cellular Response Study of Magnesium-Based Materials.
Front Bioeng Biotechnol. 2022 Jul 7;10:940172. doi: 10.3389/fbioe.2022.940172. eCollection 2022.
7
Vascular Tissue Engineering: Challenges and Requirements for an Ideal Large Scale Blood Vessel.
Front Bioeng Biotechnol. 2021 Oct 4;9:721843. doi: 10.3389/fbioe.2021.721843. eCollection 2021.
8
The biological responses and mechanisms of endothelial cells to magnesium alloy.
Regen Biomater. 2021 May 28;8(3):rbab017. doi: 10.1093/rb/rbab017. eCollection 2021 Jun.
9
An ex vivo physiologic and hyperplastic vessel culture model to study intra-arterial stent therapies.
Biomaterials. 2021 Aug;275:120911. doi: 10.1016/j.biomaterials.2021.120911. Epub 2021 May 29.
10
Next-generation tissue-engineered heart valves with repair, remodelling and regeneration capacity.
Nat Rev Cardiol. 2021 Feb;18(2):92-116. doi: 10.1038/s41569-020-0422-8. Epub 2020 Sep 9.

本文引用的文献

1
Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study.
Corros Sci. 2016 Mar;104:277-289. doi: 10.1016/j.corsci.2015.12.020. Epub 2015 Dec 24.
2
Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments.
Regen Biomater. 2015 Mar;2(1):59-69. doi: 10.1093/rb/rbu015. Epub 2015 Jan 6.
3
Blood compatibility of magnesium and its alloys.
Acta Biomater. 2015 Oct;25:384-94. doi: 10.1016/j.actbio.2015.07.029. Epub 2015 Jul 22.
4
Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials.
Acta Biomater. 2015 Jul;21:237-49. doi: 10.1016/j.actbio.2015.04.011. Epub 2015 Apr 15.
5
Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review.
Acta Biomater. 2015 Feb;13:16-31. doi: 10.1016/j.actbio.2014.11.048. Epub 2014 Dec 4.
6
Flow-induced corrosion behavior of absorbable magnesium-based stents.
Acta Biomater. 2014 Dec;10(12):5213-5223. doi: 10.1016/j.actbio.2014.08.034. Epub 2014 Sep 6.
7
Magnesium in the murine artery: probing the products of corrosion.
Acta Biomater. 2014 Mar;10(3):1475-83. doi: 10.1016/j.actbio.2013.11.021. Epub 2013 Dec 1.
8
Non-invasive pH determination adjacent to degradable biomaterials in vivo.
Acta Biomater. 2014 Jan;10(1):34-9. doi: 10.1016/j.actbio.2013.08.047. Epub 2013 Sep 8.
9
Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: an improved understanding of magnesium corrosion.
Acta Biomater. 2013 Nov;9(10):8761-70. doi: 10.1016/j.actbio.2013.03.026. Epub 2013 Mar 25.
10
Magnesium degradation as determined by artificial neural networks.
Acta Biomater. 2013 Nov;9(10):8722-9. doi: 10.1016/j.actbio.2013.02.042. Epub 2013 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验