Suppr超能文献

评估脂肪组织的基质血管成分作为基于干细胞的组织工程血管移植物的基础。

Evaluation of the stromal vascular fraction of adipose tissue as the basis for a stem cell-based tissue-engineered vascular graft.

作者信息

Krawiec Jeffrey T, Liao Han-Tsung, Kwan LaiYee Lily, D'Amore Antonio, Weinbaum Justin S, Rubin J Peter, Wagner William R, Vorp David A

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa.

Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pa; Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery, Craniofacial Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.

出版信息

J Vasc Surg. 2017 Sep;66(3):883-890.e1. doi: 10.1016/j.jvs.2016.09.034. Epub 2016 Dec 22.

Abstract

OBJECTIVE

One of the rate-limiting barriers within the field of vascular tissue engineering is the lengthy fabrication time associated with expanding appropriate cell types in culture. One particularly attractive cell type for this purpose is the adipose-derived mesenchymal stem cell (AD-MSC), which is abundant and easily harvested from liposuction procedures. Even this cell type has its drawbacks, however, including the required culture period for expansion, which could pose risks of cellular transformation or contamination. Eliminating culture entirely would be ideal to avoid these concerns. In this study, we used the raw population of cells obtained after digestion of human liposuction aspirates, known as the stromal vascular fraction (SVF), as an abundant, culture-free cell source for tissue-engineered vascular grafts (TEVGs).

METHODS

SVF cells and donor-paired cultured AD-MSCs were first assessed for their abilities to differentiate into vascular smooth muscle cells (SMCs) after angiotensin II stimulation and to secrete factors (eg, conditioned media) that promote SMC migration. Next, both cell types were incorporated into TEVG scaffolds, implanted as an aortic graft in a Lewis rat model, and assessed for their patency and composition.

RESULTS

In general, the human SVF cells were able to perform the same functions as AD-MSCs isolated from the same donor by culture expansion. Specifically, cells within the SVF performed two important functions; namely, they were able to differentiate into SMCs (SVF calponin expression: 16.4% ± 7.7% vs AD-MSC: 19.9%% ± 1.7%) and could secrete promigratory factors (SVF migration rate relative to control: 3.1 ± 0.3 vs AD-MSC: 2.5 ± 0.5). The SVF cells were also capable of being seeded within biodegradable, elastomeric, porous scaffolds that, when implanted in vivo for 8 weeks, generated patent TEVGs (SVF: 83% patency vs AD-MSC: 100% patency) populated with primary vascular components (eg, SMCs, endothelial cells, collagen, and elastin).

CONCLUSIONS

Human adipose tissue can be used as a culture-free cell source to create TEVGs, laying the groundwork for the rapid production of cell-seeded grafts.

摘要

目的

血管组织工程领域的限速障碍之一是在培养中扩增合适细胞类型所需的漫长制备时间。用于此目的的一种特别有吸引力的细胞类型是脂肪来源的间充质干细胞(AD-MSC),它数量丰富且易于从抽脂手术中获取。然而,即使这种细胞类型也有其缺点,包括扩增所需的培养期,这可能带来细胞转化或污染的风险。完全消除培养对于避免这些问题将是理想的。在本研究中,我们使用人类抽脂吸出物消化后获得的原始细胞群体,即基质血管成分(SVF),作为组织工程血管移植物(TEVG)丰富的、无需培养的细胞来源。

方法

首先评估SVF细胞和供体配对培养的AD-MSC在血管紧张素II刺激后分化为血管平滑肌细胞(SMC)的能力以及分泌促进SMC迁移的因子(如条件培养基)的能力。接下来,将这两种细胞类型都整合到TEVG支架中,作为主动脉移植物植入Lewis大鼠模型中,并评估其通畅性和组成。

结果

总体而言,人类SVF细胞能够执行与通过培养扩增从同一供体分离的AD-MSC相同的功能。具体而言,SVF中的细胞执行两项重要功能;即,它们能够分化为SMC(SVF钙调蛋白表达:16.4%±7.7%,而AD-MSC为:19.9%±1.7%),并且能够分泌促迁移因子(相对于对照的SVF迁移率:3.1±0.3,而AD-MSC为:2.5±0.5)。SVF细胞也能够接种到可生物降解的、弹性的、多孔支架中,当在体内植入8周时,可生成具有通畅性的TEVG(SVF:通畅率83%,而AD-MSC为:100%通畅率),其中含有主要血管成分(如SMC、内皮细胞、胶原蛋白和弹性蛋白)。

结论

人类脂肪组织可作为无需培养的细胞来源来制造TEVG,为快速生产细胞接种移植物奠定基础。

相似文献

1
Evaluation of the stromal vascular fraction of adipose tissue as the basis for a stem cell-based tissue-engineered vascular graft.
J Vasc Surg. 2017 Sep;66(3):883-890.e1. doi: 10.1016/j.jvs.2016.09.034. Epub 2016 Dec 22.
2
An exploratory study on the preparation and evaluation of a "same-day" adipose stem cell-based tissue-engineered vascular graft.
J Thorac Cardiovasc Surg. 2018 Nov;156(5):1814-1822.e3. doi: 10.1016/j.jtcvs.2018.05.120. Epub 2018 Jul 2.
3
Allogeneic human tissue-engineered blood vessel.
J Vasc Surg. 2012 Mar;55(3):790-8. doi: 10.1016/j.jvs.2011.07.098. Epub 2011 Nov 4.
4
Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo.
J Vasc Surg. 2011 Feb;53(2):426-34. doi: 10.1016/j.jvs.2010.07.054.
6
Pericyte-based human tissue engineered vascular grafts.
Biomaterials. 2010 Nov;31(32):8235-44. doi: 10.1016/j.biomaterials.2010.07.034. Epub 2010 Aug 3.
8
Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis.
Acta Biomater. 2020 Mar 15;105:146-158. doi: 10.1016/j.actbio.2020.01.020. Epub 2020 Jan 17.

引用本文的文献

1
Mesenchymal Stem Cell-Conditioned Media-Loaded Microparticles Enhance Acute Patency in Silk-Based Vascular Grafts.
Bioengineering (Basel). 2024 Sep 21;11(9):947. doi: 10.3390/bioengineering11090947.
2
Implantation of Adipose-Derived Mesenchymal Stromal Cells (ADSCs)-Lining Prosthetic Graft Promotes Vascular Regeneration in Monkeys and Pigs.
Tissue Eng Regen Med. 2024 Jun;21(4):641-651. doi: 10.1007/s13770-023-00615-z. Epub 2024 Jan 8.
4
Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations.
Front Bioeng Biotechnol. 2023 Jan 10;10:1097334. doi: 10.3389/fbioe.2022.1097334. eCollection 2022.
5
Heparan Sulfate: A Regulator of White Adipocyte Differentiation and of Vascular/Adipocyte Interactions.
Biomedicines. 2022 Aug 29;10(9):2115. doi: 10.3390/biomedicines10092115.
6
Enhancing Stem Cell-Based Therapeutic Potential by Combining Various Bioengineering Technologies.
Front Cell Dev Biol. 2022 Jul 5;10:901661. doi: 10.3389/fcell.2022.901661. eCollection 2022.
7
Translational products of adipose tissue-derived mesenchymal stem cells: Bench to bedside applications.
World J Stem Cells. 2021 Oct 26;13(10):1360-1381. doi: 10.4252/wjsc.v13.i10.1360.
8
CCL2 loaded microparticles promote acute patency in silk-based vascular grafts implanted in rat aortae.
Acta Biomater. 2021 Nov;135:126-138. doi: 10.1016/j.actbio.2021.08.049. Epub 2021 Sep 5.
10
Development and Application of Endothelial Cells Derived From Pluripotent Stem Cells in Microphysiological Systems Models.
Front Cardiovasc Med. 2021 Feb 15;8:625016. doi: 10.3389/fcvm.2021.625016. eCollection 2021.

本文引用的文献

4
Manual isolation of adipose-derived stem cells from human lipoaspirates.
J Vis Exp. 2013 Sep 26(79):e50585. doi: 10.3791/50585.
6
A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells.
Cytotherapy. 2013 Aug;15(8):979-85. doi: 10.1016/j.jcyt.2013.04.001. Epub 2013 May 29.
8
What is the greatest regulatory challenge in the translation of biomaterials to the clinic?
Sci Transl Med. 2012 Nov 14;4(160):160cm14. doi: 10.1126/scitranslmed.3004915.
9
Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells.
Stem Cells Dev. 2012 Sep 20;21(14):2724-52. doi: 10.1089/scd.2011.0722. Epub 2012 May 9.
10
Adult stem cell-based tissue engineered blood vessels: a review.
Biomaterials. 2012 Apr;33(12):3388-400. doi: 10.1016/j.biomaterials.2012.01.014. Epub 2012 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验