Department of Biosciences and Bioengineering, Indian Istitute of Technology Guwahati, Guwahati 781039, India; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States.
McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States.
Acta Biomater. 2020 Mar 15;105:146-158. doi: 10.1016/j.actbio.2020.01.020. Epub 2020 Jan 17.
The success of tissue-engineered vascular graft (TEVG) predominantly relies on the selection of a suitable biomaterial and graft design. Natural biopolymer silk has shown great promise for various tissue-engineering applications. This study is the first to investigate Indian endemic non-mulberry silk (Antheraea assama-AA) - which inherits naturally superior mechanical and biological traits (e.g., RGD motifs) compared to Bombyx mori-BM silk, for TEVG applications. We designed bi-layered biomimetic small diameter AA-BM silk TEVGs adopting a new fabrication methodology. The inner layer showed ideally sized (~40 µm) pores with interconnectivity to allow cellular infiltration, and an outer dense electrospun layer that confers mechanical resilience. Biodegradation of silk TEVGs into amino acids as resorbable byproducts corroborates their in vivo remodeling ability. Following our previous reports, we surgically implanted human adipose tissue-derived stromal vascular fraction (SVF) seeded silk TEVGs in Lewis rats as abdominal aortic interposition grafts for 8 weeks. Adequate suture retention strength (0.45 ± 0.1 N) without any blood seepage post-implantation substantiate the grafts' viability. AA silk-based TEVGs showed superior animal survival and graft patency compared to BM silk TEVGs. Histological analysis revealed neo-tissue formation, host cell infiltration and graft remodeling in terms of extracellular matrix turnover. Altogether, this study demonstrates promising aspects of AA silk TEVGs for vascular tissue engineering applications. STATEMENT OF SIGNIFICANCE: Clinical 'off the shelf' implementation of tissue-engineered vascular grafts (TEVGs) remains a challenge. Achieving optimal blood vessel regeneration requires the use of bioresorbable materials having suitable degradation rates while producing minimal or no toxic byproducts. Host cell recruitment and preventing acute thrombosis are other pre-requisites for successful graft remodeling. In this study, for the first time we explored the use of naturally derived Indian endemic non-mulberry Antheraea assama silk in combination with Bombyx mori silk for TEVG applications by adopting a new biomimetic approach. Our bi-layered silk TEVGs were optimally porous, mechanically resilient and biodegradable. In vivo implantation in rat aorta showed long-term patency and graft remodeling by host cell infiltration and extracellular matrix deposition corroborating their clinical feasibility.
组织工程血管移植物(TEVG)的成功主要依赖于合适的生物材料和移植物设计的选择。天然生物聚合物丝对于各种组织工程应用具有巨大的应用潜力。本研究首次探索了印度特有非桑蚕茧丝(Antheraea assama-AA),它与桑蚕茧丝(Bombyx mori-BM)相比,具有天然优越的机械和生物学特性(例如,RGD 基序),可用于 TEVG 应用。我们采用新的制造方法设计了双层仿生小直径 AA-BM 丝 TEVG。内层具有理想尺寸(~40μm)的孔,具有连通性以允许细胞渗透,而外层致密的静电纺丝层赋予机械弹性。丝 TEVG 降解为可吸收的氨基酸等可吸收生物降解产物证实了它们的体内重塑能力。根据我们之前的报告,我们将人脂肪组织来源的基质血管部分(SVF)接种的丝 TEVG 作为腹部主动脉间置移植物,通过手术植入 Lewis 大鼠体内 8 周。植入后无任何血液渗漏,足以保持适当的缝线保持力(0.45±0.1N),证实了移植物的活力。与 BM 丝 TEVG 相比,AA 丝基 TEVG 显示出更高的动物存活率和移植物通畅率。组织学分析显示,新组织形成、宿主细胞浸润和细胞外基质转化方面的移植物重塑。总的来说,这项研究证明了 AA 丝 TEVG 在血管组织工程应用中的有前景。
组织工程血管移植物(TEVG)的临床“现成”实施仍然是一个挑战。实现最佳血管再生需要使用具有合适降解率的生物可吸收材料,同时产生最小或无毒性的副产品。宿主细胞募集和防止急性血栓形成是成功移植重塑的其他先决条件。在这项研究中,我们首次探索了采用新的仿生方法,将天然衍生的印度特有非桑蚕茧丝 Antheraea assama 与 Bombyx mori 丝结合用于 TEVG 应用。我们的双层丝 TEVG 具有最佳的多孔性、机械弹性和生物降解性。在大鼠主动脉内植入显示出长期通畅性和移植物重塑,宿主细胞浸润和细胞外基质沉积证明了其临床可行性。