Suppr超能文献

相似文献

1
Identification and Characterization of the Sulfazecin Monobactam Biosynthetic Gene Cluster.
Cell Chem Biol. 2017 Jan 19;24(1):24-34. doi: 10.1016/j.chembiol.2016.11.010. Epub 2016 Dec 22.
2
Monobactam formation in sulfazecin by a nonribosomal peptide synthetase thioesterase.
Nat Chem Biol. 2018 Jan;14(1):5-7. doi: 10.1038/nchembio.2526. Epub 2017 Nov 20.
3
One Ring to Fight Them All: The Sulfazecin Story.
Cell Chem Biol. 2017 Jan 19;24(1):1-2. doi: 10.1016/j.chembiol.2017.01.001.
7
Sulfazecin, a novel beta-lactam antibiotic of bacterial origin. Isolation and chemical characterization.
J Antibiot (Tokyo). 1981 Jun;34(6):621-7. doi: 10.7164/antibiotics.34.621.
8
Sulfazecin and isosulfazecin, novel beta-lactam antibiotics of bacterial origin.
Nature. 1981 Feb 12;289(5798):590-1. doi: 10.1038/289590a0.
9
β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis.
Nature. 2015 Apr 16;520(7547):383-7. doi: 10.1038/nature14100. Epub 2015 Jan 26.

引用本文的文献

1
Non-canonical thioesterases in bacterial non-ribosomal peptide biosynthesis.
J Antibiot (Tokyo). 2025 Aug 6. doi: 10.1038/s41429-025-00854-3.
2
Small-molecule strategies to combat antibiotic resistance: mechanisms, modifications, and contemporary approaches.
RSC Adv. 2025 Jul 14;15(30):24450-24474. doi: 10.1039/d5ra04047g. eCollection 2025 Jul 10.
4
Teicoplanin Nonribosomal Peptide Synthetase Is Unable to Incorporate Alpha-Ketoacid Building Blocks.
Biochemistry. 2025 May 6;64(9):2039-2053. doi: 10.1021/acs.biochem.4c00770. Epub 2025 Apr 11.
5
Discovery of megapolipeptins by genome mining of a bacteria collection.
Chem Sci. 2024 Sep 13;15(40):16567-81. doi: 10.1039/d4sc03594a.
7
The operon is a marker of C4-alkylated monobactam biosynthesis and responsible for (,)-diaminobutyrate production.
iScience. 2024 Feb 12;27(3):109202. doi: 10.1016/j.isci.2024.109202. eCollection 2024 Mar 15.
8
Insights into group-specific pattern of secondary metabolite gene cluster in genus.
Front Microbiol. 2024 Jan 16;14:1302236. doi: 10.3389/fmicb.2023.1302236. eCollection 2023.
9
Comparative Genome Analyses Provide Insight into the Antimicrobial Activity of Endophytic .
Microorganisms. 2024 Jan 4;12(1):100. doi: 10.3390/microorganisms12010100.
10
Reducing Confusion over the Microbiome.
Anal Chem. 2023 Nov 21;95(46):16775-16785. doi: 10.1021/acs.analchem.3c02408. Epub 2023 Nov 7.

本文引用的文献

1
Biochemical Dissection of the Natural Diversification of Microcystin Provides Lessons for Synthetic Biology of NRPS.
Cell Chem Biol. 2016 Apr 21;23(4):462-71. doi: 10.1016/j.chembiol.2016.03.011.
2
One ring to rule them all: Current trends in combating bacterial resistance to the β-lactams.
Protein Sci. 2016 Apr;25(4):787-803. doi: 10.1002/pro.2889. Epub 2016 Mar 9.
3
A subdomain swap strategy for reengineering nonribosomal peptides.
Chem Biol. 2015 May 21;22(5):640-8. doi: 10.1016/j.chembiol.2015.04.015.
4
antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.
Nucleic Acids Res. 2015 Jul 1;43(W1):W237-43. doi: 10.1093/nar/gkv437. Epub 2015 May 6.
5
New promising β-lactamase inhibitors for clinical use.
Eur J Clin Microbiol Infect Dis. 2015 Jul;34(7):1303-8. doi: 10.1007/s10096-015-2375-0. Epub 2015 Apr 12.
7
β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis.
Nature. 2015 Apr 16;520(7547):383-7. doi: 10.1038/nature14100. Epub 2015 Jan 26.
8
Synthesis of L-2,3-diaminopropionic acid, a siderophore and antibiotic precursor.
Chem Biol. 2014 Mar 20;21(3):379-88. doi: 10.1016/j.chembiol.2013.12.011. Epub 2014 Jan 30.
9
Antibiotic resistance: the last resort.
Nature. 2013 Jul 25;499(7459):394-6. doi: 10.1038/499394a.
10
Targeting metallo-β-lactamase enzymes in antibiotic resistance.
Future Med Chem. 2013 Jul;5(11):1243-63. doi: 10.4155/fmc.13.55.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验