Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
Cell Chem Biol. 2017 Jan 19;24(1):24-34. doi: 10.1016/j.chembiol.2016.11.010. Epub 2016 Dec 22.
The monobactams, exemplified by the natural product sulfazecin, are the only class of β-lactam antibiotics not inactivated by metallo-β-lactamases, which confer bacteria with extended-spectrum β-lactam resistance. We screened a transposon mutagenesis library from Pseudomonas acidophila ATCC 31363 and isolated a sulfazecin-deficient mutant that revealed a gene cluster encoding two non-ribosomal peptide synthetases (NRPSs), a methyltransferase, a sulfotransferase, and a dioxygenase. Three modules and an aberrant C-terminal thioesterase (TE) domain are distributed across the two NRPSs. Biochemical examination of the adenylation (A) domains provided evidence that L-2,3-diaminopropionate, not L-serine as previously thought, is the direct source of the β-lactam ring of sulfazecin. ATP/PPi exchange assay also revealed an unusual substrate selectivity shift of one A domain when expressed with or without the immediately upstream condensation domain. Gene inactivation analysis defined a cluster of 13 open reading frames sufficient for sulfazecin production, precursor synthesis, self-resistance, and regulation. The identification of a key intermediate supported a proposed NRPS-mediated mechanism of sulfazecin biosynthesis and β-lactam ring formation distinct from the nocardicins, another NRPS-derived subclass of monocyclic β-lactam. These findings will serve as the basis for further biosynthetic research and potential engineering of these important antibiotics.
单环β-内酰胺类抗生素仅有的一类β-内酰胺抗生素,不受金属β-内酰胺酶失活,而金属β-内酰胺酶使细菌具有广谱β-内酰胺耐药性。我们从嗜酸假单胞菌 ATCC 31363 转座子突变文库中筛选,并分离出一个对磺胺噻唑缺乏的突变体,该突变体揭示了一个基因簇,编码两个非核糖体肽合成酶 (NRPSs)、一个甲基转移酶、一个磺基转移酶和一个双加氧酶。三个模块和一个异常的 C 端硫酯酶 (TE) 结构域分布在两个 NRPS 上。对腺苷酰化 (A) 结构域的生化研究提供了证据,表明 L-2,3-二氨基丙酸,而不是以前认为的 L-丝氨酸,是磺胺噻唑β-内酰胺环的直接来源。ATP/PPi 交换测定还揭示了一个 A 结构域在与或不与紧邻的缩合结构域一起表达时,表现出异常的底物选择性转移。基因失活分析确定了一个由 13 个开放阅读框组成的簇,足以用于磺胺噻唑的产生、前体合成、自我抗性和调控。关键中间体的鉴定支持了一个由 NRPS 介导的磺胺噻唑生物合成和β-内酰胺环形成的机制,该机制与诺卡菌素不同,诺卡菌素是另一种由 NRPS 衍生的单环β-内酰胺亚类。这些发现将为进一步的生物合成研究和这些重要抗生素的潜在工程化提供基础。