Suppr超能文献

NRPS 缩合结构域的进化和功能分析整合了β-内酰胺、D-氨基酸和去氢氨基酸的合成。

Evolutionary and functional analysis of an NRPS condensation domain integrates β-lactam, ᴅ-amino acid, and dehydroamino acid synthesis.

机构信息

Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218.

Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218

出版信息

Proc Natl Acad Sci U S A. 2021 Apr 27;118(17). doi: 10.1073/pnas.2026017118.

Abstract

Nonribosomal peptide synthetases (NRPSs) are large, multidomain biosynthetic enzymes involved in the assembly-line-like synthesis of numerous peptide natural products. Among these are clinically useful antibiotics including three classes of β-lactams: the penicillins/cephalosporins, the monobactams, and the monocyclic nocardicins, as well as the vancomycin family of glycopeptides and the depsipeptide daptomycin. During NRPS synthesis, peptide bond formation is catalyzed by condensation (C) domains, which couple the nascent peptide with the next programmed amino acid of the sequence. A growing number of additional functions are linked to the activity of C domains. In the biosynthesis of the nocardicins, a specialized C domain prepares the embedded β-lactam ring from a serine residue. Here, we examine the evolutionary descent of this unique β-lactam-synthesizing C domain. Guided by its ancestry, we predict and demonstrate in vitro that this C domain alternatively performs peptide bond formation when a single stereochemical change is introduced into its peptide starting material. Remarkably, the function of the downstream thioesterase (TE) domain also changes. Natively, the TE directs C terminus epimerization prior to hydrolysis when the β-lactam is made but catalyzes immediate release of the alternative peptide. In addition, we investigate the roles of C-domain histidine residues in light of clade-specific sequence motifs, refining earlier mechanistic proposals of both β-lactam formation and canonical peptide synthesis. Finally, expanded phylogenetic analysis reveals unifying connections between β-lactam synthesis and allied C domains associated with the appearance of ᴅ-amino acid and dehydroamino acid residues in other NRPS-derived natural products.

摘要

非核糖体肽合成酶(NRPSs)是一类大型的、多结构域的生物合成酶,参与众多肽类天然产物的装配线式合成。其中包括临床上有用的抗生素,包括三类β-内酰胺类抗生素:青霉素/头孢菌素、单环β-内酰胺类抗生素和单环诺卡菌素,以及万古霉素类糖肽和去甲万古霉素类脂肽抗生素。在 NRPS 合成过程中,肽键的形成由缩合(C)结构域催化,该结构域将新生肽与序列中下一个编程的氨基酸偶联。越来越多的其他功能与 C 结构域的活性相关联。在诺卡菌素的生物合成中,一个特殊的 C 结构域从丝氨酸残基中制备嵌入的β-内酰胺环。在这里,我们研究了这个独特的β-内酰胺合成 C 结构域的进化来源。根据其祖先,我们预测并在体外证明,当其肽起始材料发生单一立体化学变化时,该 C 结构域可以替代地进行肽键形成。值得注意的是,下游硫酯酶(TE)结构域的功能也发生了变化。天然情况下,当β-内酰胺合成时,TE 会在水解前引导 C 末端差向异构化,但会立即释放替代肽。此外,我们还根据特定进化枝的序列基序研究了 C 结构域组氨酸残基的作用,从而改进了之前关于β-内酰胺形成和典型肽合成的机制假设。最后,扩展的系统发育分析揭示了β-内酰胺合成与其他 NRPS 衍生天然产物中出现的ᴅ-氨基酸和脱氢氨基酸残基相关联的 C 结构域之间的统一联系。

相似文献

2
β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis.
Nature. 2015 Apr 16;520(7547):383-7. doi: 10.1038/nature14100. Epub 2015 Jan 26.
3
Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis.
Nat Chem Biol. 2014 Apr;10(4):251-8. doi: 10.1038/nchembio.1456. Epub 2014 Feb 16.
5
Mechanism of Integrated β-Lactam Formation by a Nonribosomal Peptide Synthetase during Antibiotic Synthesis.
Biochemistry. 2018 Jun 19;57(24):3353-3358. doi: 10.1021/acs.biochem.8b00411. Epub 2018 May 3.
6
Accurate Substrate-Like Probes for Trapping Late-Stage Intermediates in Nonribosomal Peptide Synthetase Condensation Domains.
ACS Chem Biol. 2022 Aug 19;17(8):2046-2053. doi: 10.1021/acschembio.2c00474. Epub 2022 Aug 1.
7
Identification and Characterization of the Sulfazecin Monobactam Biosynthetic Gene Cluster.
Cell Chem Biol. 2017 Jan 19;24(1):24-34. doi: 10.1016/j.chembiol.2016.11.010. Epub 2016 Dec 22.
9
Acyl Donor Stringency and Dehydroaminoacyl Intermediates in β-Lactam Formation by a Non-ribosomal Peptide Synthetase.
ACS Chem Biol. 2021 May 21;16(5):806-812. doi: 10.1021/acschembio.1c00117. Epub 2021 Apr 13.

引用本文的文献

1
Mammalian Tolerance to Amino Acid Heterochirality.
Chembiochem. 2025 Jul 11;26(13):e202500273. doi: 10.1002/cbic.202500273. Epub 2025 Jun 19.
2
Biosynthesis of the corallorazines, a widespread class of antibiotic cyclic lipodipeptides.
RSC Chem Biol. 2024 Aug 16;5(10):970-80. doi: 10.1039/d4cb00157e.
3
Computational Insights into Amide Bond Formation Catalyzed by the Condensation Domain of Nonribosomal Peptide Synthetases.
ACS Omega. 2024 Jun 22;9(26):28556-28563. doi: 10.1021/acsomega.4c02531. eCollection 2024 Jul 2.
4
PEARL-Catalyzed Peptide Bond Formation after Chain Reversal by Ureido-Forming Condensation Domains.
ACS Cent Sci. 2024 Jun 3;10(6):1242-1250. doi: 10.1021/acscentsci.4c00044. eCollection 2024 Jun 26.
6
The operon is a marker of C4-alkylated monobactam biosynthesis and responsible for (,)-diaminobutyrate production.
iScience. 2024 Feb 12;27(3):109202. doi: 10.1016/j.isci.2024.109202. eCollection 2024 Mar 15.
7
Controlling Substrate- and Stereospecificity of Condensation Domains in Nonribosomal Peptide Synthetases.
ACS Chem Biol. 2024 Mar 15;19(3):599-606. doi: 10.1021/acschembio.3c00678. Epub 2024 Feb 23.
8
High-throughput reprogramming of an NRPS condensation domain.
Nat Chem Biol. 2024 Jun;20(6):761-769. doi: 10.1038/s41589-023-01532-x. Epub 2024 Feb 2.
9
Dehydroamino acid residues in bioactive natural products.
Nat Prod Rep. 2024 Feb 21;41(2):273-297. doi: 10.1039/d3np00041a.
10
Structure modification of an antibiotic: by engineering the fusaricidin bio-synthetase A in .
Front Microbiol. 2023 Sep 26;14:1239958. doi: 10.3389/fmicb.2023.1239958. eCollection 2023.

本文引用的文献

1
Using ggtree to Visualize Data on Tree-Like Structures.
Curr Protoc Bioinformatics. 2020 Mar;69(1):e96. doi: 10.1002/cpbi.96.
2
Treeio: An R Package for Phylogenetic Tree Input and Output with Richly Annotated and Associated Data.
Mol Biol Evol. 2020 Feb 1;37(2):599-603. doi: 10.1093/molbev/msz240.
3
MIBiG 2.0: a repository for biosynthetic gene clusters of known function.
Nucleic Acids Res. 2020 Jan 8;48(D1):D454-D458. doi: 10.1093/nar/gkz882.
4
Structural and Biochemical Studies of a Biocatalyst for the Enzymatic Production of Wax Esters.
ACS Catal. 2018 Jul 6;8(7):6334-6344. doi: 10.1021/acscatal.8b00787. Epub 2018 Jun 1.
5
Genomic analysis of siderophore β-hydroxylases reveals divergent stereocontrol and expands the condensation domain family.
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19805-19814. doi: 10.1073/pnas.1903161116. Epub 2019 Sep 16.
7
The biosynthetic implications of late-stage condensation domain selectivity during glycopeptide antibiotic biosynthesis.
Chem Sci. 2018 Oct 10;10(1):118-133. doi: 10.1039/c8sc03530j. eCollection 2019 Jan 7.
8
The Pfam protein families database in 2019.
Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432. doi: 10.1093/nar/gky995.
9
Mechanism of Integrated β-Lactam Formation by a Nonribosomal Peptide Synthetase during Antibiotic Synthesis.
Biochemistry. 2018 Jun 19;57(24):3353-3358. doi: 10.1021/acs.biochem.8b00411. Epub 2018 May 3.
10
In Vitro Biosynthesis of the Nonproteinogenic Amino Acid Methoxyvinylglycine.
Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6780-6785. doi: 10.1002/anie.201713419. Epub 2018 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验