Suppr超能文献

神经网络作为预测急诊科晕厥风险的工具。

Neural networks as a tool to predict syncope risk in the Emergency Department.

机构信息

Dipartimento di Medicina Interna e Specializzazioni Mediche, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Italy.

CNR-IRCrES, Research Institute on Sustainable Economic Growth, Moncalieri, Italy.

出版信息

Europace. 2017 Nov 1;19(11):1891-1895. doi: 10.1093/europace/euw336.

Abstract

AIMS

There is no universally accepted tool for the risk stratification of syncope patients in the Emergency Department. The aim of this study was to investigate the short-term predictive accuracy of an artificial neural network (ANN) in stratifying the risk in this patient group.

METHODS AND RESULTS

We analysed individual level data from three prospective studies, with a cumulative sample size of 1844 subjects. Each dataset was reanalysed to reduce the heterogeneity among studies defining abnormal electrocardiogram (ECG) and serious outcomes according to a previous consensus. Ten variables from patient history, ECG, and the circumstances of syncope were used to train and test the neural network. Given the exploratory nature of this work, we adopted two approaches to train and validate the tool. One approach used 4/5 of the data for the training set and 1/5 for the validation set, and the other approach used 9/10 for the training set and 1/10 for the validation set. The sensitivity, specificity, and area under the receiver operating characteristic curve of ANNs in identifying short-term adverse events after syncope were 95% [95% confidence interval (CI) 80-98%], 67% (95% CI 62-72%), 0.69 with the 1/5 approach and 100% (95% CI 84-100%), 79% (95% CI 72-85%), 0.78 with the 1/10 approach.

CONCLUSION

The results of our study suggest that ANNs are effective in predicting the short-term risk of patients with syncope. Prospective studies are needed in order to compare ANNs' predictive capability with existing rules and clinical judgment.

摘要

目的

目前在急诊科中,还没有一种被普遍认可的工具用于对晕厥患者进行风险分层。本研究旨在调查人工神经网络(ANN)在分层该患者群体风险方面的短期预测准确性。

方法和结果

我们分析了来自三项前瞻性研究的个体水平数据,累积样本量为 1844 例。根据先前的共识,根据每个数据集重新分析定义异常心电图(ECG)和严重结局的标准,以减少研究之间的异质性。从患者病史、心电图和晕厥情况中使用 10 个变量来训练和测试神经网络。鉴于这项工作的探索性质,我们采用了两种方法来训练和验证该工具。一种方法将数据的 4/5 用于训练集,1/5 用于验证集,另一种方法将 9/10 用于训练集,1/10 用于验证集。在识别晕厥后短期不良事件时,ANNs 的敏感性、特异性和接受者操作特征曲线下面积分别为 95%[95%置信区间(CI)80-98%]、67%(95%CI 62-72%)、0.69,采用 1/5 方法,以及 100%(95%CI 84-100%)、79%(95%CI 72-85%)、0.78,采用 1/10 方法。

结论

我们的研究结果表明,ANN 可有效预测晕厥患者的短期风险。需要前瞻性研究来比较 ANN 的预测能力与现有规则和临床判断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验