Liu Yen-Yi, Chen Chih-Chieh, Chiou Chien-Shun
Central Regional Laboratory, Center for Diagnostics and Vaccine Development, Centers for Disease Control Taichung, Taiwan.
Institute of Medical Science and Technology, National Sun Yat-sen UniversityKaohsiung, Taiwan; Medical Science and Technology Center, National Sun Yat-sen UniversityKaohsiung, Taiwan.
Front Microbiol. 2016 Dec 15;7:2010. doi: 10.3389/fmicb.2016.02010. eCollection 2016.
We built a pan-genome allele database with 395 genomes of serovar Enteritidis and developed computer tools for analysis of whole genome sequencing (WGS) data of bacterial isolates for disease cluster identification. A web server (http://wgmlst.imst.nsysu.edu.tw) was set up with the database and the tools, allowing users to upload WGS data to generate whole genome multilocus sequence typing (wgMLST) profiles and to perform cluster analysis of wgMLST profiles. The usefulness of the database in disease cluster identification was demonstrated by analyzing a panel of genomes from 55 epidemiologically well-defined Enteritidis isolates provided by the Minnesota Department of Health. The wgMLST-based cluster analysis revealed distinct clades that were concordant with the epidemiologically defined outbreaks. Thus, using a common pan-genome allele database, wgMLST can be a promising WGS-based subtyping approach for disease surveillance and outbreak investigation across laboratories.
我们构建了一个包含395个肠炎沙门氏菌血清型基因组的泛基因组等位基因数据库,并开发了用于分析细菌分离株全基因组测序(WGS)数据以识别疾病集群的计算机工具。利用该数据库和工具搭建了一个网络服务器(http://wgmlst.imst.nsysu.edu.tw),用户可以上传WGS数据以生成全基因组多位点序列分型(wgMLST)图谱,并对wgMLST图谱进行聚类分析。通过分析明尼苏达州卫生部提供的55株流行病学定义明确的肠炎沙门氏菌分离株的一组基因组,证明了该数据库在疾病集群识别中的实用性。基于wgMLST的聚类分析揭示了与流行病学定义的疫情一致的不同进化枝。因此,使用通用的泛基因组等位基因数据库,wgMLST可能成为一种有前景的基于WGS的亚型分析方法,用于跨实验室的疾病监测和疫情调查。