Suppr超能文献

单心动周期三维冠状动脉内光学相干断层扫描术

Single cardiac cycle three-dimensional intracoronary optical coherence tomography.

作者信息

Kim Tae Shik, Park Hyun-Sang, Jang Sun-Joo, Song Joon Woo, Cho Han Saem, Kim Sunwon, Bouma Brett E, Kim Jin Won, Oh Wang-Yuhl

机构信息

Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea; KI for Health Science and Technology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea; These authors contributed equally to this work.

KI for Health Science and Technology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea; Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea; Currently at Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; These authors contributed equally to this work.

出版信息

Biomed Opt Express. 2016 Nov 1;7(12):4847-4858. doi: 10.1364/BOE.7.004847. eCollection 2016 Dec 1.

Abstract

While high-speed intracoronary optical coherence tomography (OCT) provides three-dimensional (3D) visualization of coronary arteries , imaging speeds remain insufficient to avoid motion artifacts induced by heartbeat, limiting the clinical utility of OCT. In this paper, we demonstrate development of a high-speed intracoronary OCT system (frame rate: 500 frames/s, pullback speed: 100 mm/s) along with prospective electrocardiogram (ECG) triggering technology, which enabled volumetric imaging of long coronary segments within a single cardiac cycle (70 mm pullback in 0.7 s) with minimal cardiac motion artifact. This technology permitted detailed visualization of 3D architecture of the coronary arterial wall of a swine and fine structure of the implanted stent.

摘要

虽然高速冠状动脉光学相干断层扫描(OCT)可提供冠状动脉的三维(3D)可视化图像,但成像速度仍不足以避免心跳引起的运动伪影,限制了OCT的临床应用。在本文中,我们展示了一种高速冠状动脉OCT系统(帧率:500帧/秒,回撤速度:100毫米/秒)的开发以及前瞻性心电图(ECG)触发技术,该技术能够在单个心动周期内(0.7秒内回撤70毫米)对长冠状动脉节段进行容积成像,且心脏运动伪影最小。这项技术能够详细显示猪冠状动脉壁的三维结构以及植入支架的精细结构。

相似文献

1
Single cardiac cycle three-dimensional intracoronary optical coherence tomography.
Biomed Opt Express. 2016 Nov 1;7(12):4847-4858. doi: 10.1364/BOE.7.004847. eCollection 2016 Dec 1.
2
Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography.
Biomed Opt Express. 2015 Nov 23;6(12):5021-32. doi: 10.1364/BOE.6.005021. eCollection 2015 Dec 1.
5
In-vitro and in-vivo imaging of coronary artery stents with Heartbeat OCT.
Int J Cardiovasc Imaging. 2020 Jun;36(6):1021-1029. doi: 10.1007/s10554-020-01796-7. Epub 2020 Feb 28.
6
Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter.
Biomed Opt Express. 2016 Jul 5;7(8):2927-42. doi: 10.1364/BOE.7.002927. eCollection 2016 Aug 1.
7
Clinical Characterization of Coronary Atherosclerosis With Dual-Modality OCT and Near-Infrared Autofluorescence Imaging.
JACC Cardiovasc Imaging. 2016 Nov;9(11):1304-1314. doi: 10.1016/j.jcmg.2015.11.020. Epub 2016 Mar 9.
10
Advances in Automated Assessment of Intracoronary Optical Coherence Tomography and Their Clinical Application.
Interv Cardiol Clin. 2015 Jul;4(3):351-360. doi: 10.1016/j.iccl.2015.02.004. Epub 2015 May 29.

引用本文的文献

1
Intravascular imaging in coronary stent restenosis: Prevention, characterization, and management.
Front Cardiovasc Med. 2022 Aug 9;9:843734. doi: 10.3389/fcvm.2022.843734. eCollection 2022.
2
Advances in IVUS/OCT and Future Clinical Perspective of Novel Hybrid Catheter System in Coronary Imaging.
Front Cardiovasc Med. 2020 Jul 31;7:119. doi: 10.3389/fcvm.2020.00119. eCollection 2020.
3
In-vitro and in-vivo imaging of coronary artery stents with Heartbeat OCT.
Int J Cardiovasc Imaging. 2020 Jun;36(6):1021-1029. doi: 10.1007/s10554-020-01796-7. Epub 2020 Feb 28.
4
Intravascular optical coherence tomography [Invited].
Biomed Opt Express. 2017 Apr 26;8(5):2660-2686. doi: 10.1364/BOE.8.002660. eCollection 2017 May 1.

本文引用的文献

1
ECG-Triggered, Single Cardiac Cycle, High-Speed, 3D, Intracoronary OCT.
JACC Cardiovasc Imaging. 2016 May;9(5):623-5. doi: 10.1016/j.jcmg.2015.11.021.
2
Heartbeat OCT and Motion-Free 3D In Vivo Coronary Artery Microscopy.
JACC Cardiovasc Imaging. 2016 May;9(5):622-3. doi: 10.1016/j.jcmg.2015.08.010.
3
Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography.
Biomed Opt Express. 2015 Nov 23;6(12):5021-32. doi: 10.1364/BOE.6.005021. eCollection 2015 Dec 1.
4
GPU-accelerated framework for intracoronary optical coherence tomography imaging at the push of a button.
PLoS One. 2015 Apr 16;10(4):e0124192. doi: 10.1371/journal.pone.0124192. eCollection 2015.
5
Optical coherence tomography assessment of late intra-scaffold dissection: a new challenge of bioresorbable scaffolds.
JACC Cardiovasc Interv. 2015 Jan;8(1 Pt A):e11-2. doi: 10.1016/j.jcin.2014.08.007. Epub 2014 Dec 10.
8
High frame-rate intravascular optical frequency-domain imaging in vivo.
Biomed Opt Express. 2013 Dec 16;5(1):223-32. doi: 10.1364/BOE.5.000223.
9
Intravascular optical coherence tomography imaging at 3200 frames per second.
Opt Lett. 2013 May 15;38(10):1715-7. doi: 10.1364/OL.38.001715.
10
In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography.
J Am Coll Cardiol. 2013 Nov 5;62(19):1748-58. doi: 10.1016/j.jacc.2013.05.071. Epub 2013 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验