Suppr超能文献

原子层沉积 VO 对并五苯的界面能对准:原位光电子能谱研究。

Interface Energy Alignment of Atomic-Layer-Deposited VO on Pentacene: an in Situ Photoelectron Spectroscopy Investigation.

机构信息

School of Advanced Materials, Shenzhen Graduate School, Peking University , Shenzhen 518055, China.

出版信息

ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1885-1890. doi: 10.1021/acsami.6b12832. Epub 2017 Jan 5.

Abstract

Ultrathin atomic-layer-deposited (ALD) vanadium oxide (VO) interlayer has recently been demonstrated for remarkably reducing the contact resistance in organic electronic devices (Adv. Funct. Mater. 2016, 26, 4456). Herein, we present an in situ photoelectron spectroscopy investigation (including X-ray and ultraviolet photoelectron spectroscopies) of ALD VO grown on pentacene to understand the role of the ALD VO interlayer for the improved contact resistance. The in situ photoelectron spectroscopy characterizations allow us to monitor the ALD growth process of VO and trace the evolutions of the work function, pentacene HOMO level, and VO defect states during the growth. The initial VO growth is found to be partially delayed on pentacene in the first ∼20 ALD cycles. The underneath pentacene layer is largely intact after ALD. The ALD VO is found to contain a high density of defect states starting from 0.67 eV below the Fermi level, and the energy level of these defect states is in excellent alignment with the HOMO level of pentacene, which therefore allows these VO defect states to provide an efficient hole-injection pathway at the contact interface.

摘要

超薄原子层沉积(ALD)氧化钒(VO)层最近被证明可以显著降低有机电子器件中的接触电阻(Adv. Funct. Mater. 2016, 26, 4456)。在此,我们通过原位光电子能谱研究(包括 X 射线光电子能谱和紫外光电子能谱)了在并五苯上生长的 ALD VO,以了解 ALD VO 层对于改善接触电阻的作用。原位光电子能谱表征使我们能够监测 VO 的 ALD 生长过程,并跟踪功函数、并五苯 HOMO 能级和 VO 缺陷态在生长过程中的演变。发现初始 VO 生长在最初的 ∼20 个 ALD 循环中在并五苯上部分延迟。ALD 后,底下的并五苯层基本完整。ALD VO 被发现从费米能级以下 0.67 eV 开始含有高密度的缺陷态,这些缺陷态的能级与并五苯的 HOMO 能级非常匹配,因此允许这些 VO 缺陷态在接触界面提供有效的空穴注入途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验