Suppr超能文献

从对甲氧苄啶敏感和耐药的洋葱伯克霍尔德菌中分离和鉴定二氢叶酸还原酶

Isolation and characterization of dihydrofolate reductase from trimethoprim-susceptible and trimethoprim-resistant Pseudomonas cepacia.

作者信息

Burns J L, Lien D M, Hedin L A

机构信息

Division of Infectious Disease, Children's Hospital and Medical Center, Seattle, Washington.

出版信息

Antimicrob Agents Chemother. 1989 Aug;33(8):1247-51. doi: 10.1128/AAC.33.8.1247.

Abstract

Trimethoprim resistance was investigated in cystic fibrosis isolates of Pseudomonas cepacia. Determination of the MIC of trimethoprim for 111 strains revealed at least two populations of resistant organisms, suggesting the presence of more than one mechanism of resistance. Investigation of the antibiotic target, dihydrofolate reductase, was undertaken in both a susceptible strain and a strain with high-level resistance (MIC, greater than 1,000 micrograms/ml). The enzyme was purified by using ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. Specific activities, molecular weights, isoelectric points, and substrate kinetics were similar for both enzymes. However, the dihydrofolate reductase from the trimethoprim-resistant strain demonstrated decreased susceptibility to inhibition by trimethoprim and increased susceptibility to inhibition by methotrexate, suggesting that these two enzymes are not identical. We conclude that the mechanism of trimethoprim resistance in this strain with high-level resistance is production of a trimethoprim-resistant dihydrofolate reductase.

摘要

对洋葱伯克霍尔德菌的囊性纤维化分离株进行了甲氧苄啶耐药性研究。对111株菌株的甲氧苄啶最低抑菌浓度(MIC)测定显示,至少存在两个耐药菌群体,这表明存在不止一种耐药机制。在一株敏感菌株和一株高耐药性菌株(MIC大于1000微克/毫升)中对该抗生素的作用靶点二氢叶酸还原酶进行了研究。通过硫酸铵沉淀、凝胶过滤和离子交换色谱法对该酶进行了纯化。两种酶的比活性、分子量、等电点和底物动力学相似。然而,来自甲氧苄啶耐药菌株的二氢叶酸还原酶对甲氧苄啶抑制的敏感性降低,对甲氨蝶呤抑制的敏感性增加,这表明这两种酶并不相同。我们得出结论,该高耐药性菌株中甲氧苄啶耐药的机制是产生了一种对甲氧苄啶耐药的二氢叶酸还原酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6bb/172634/0d288e1c5dcc/aac00075-0139-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验