Suppr超能文献

猪痢疾密螺旋体(猪痢疾病原体)的葡萄糖代谢与NADH循环

Glucose metabolism and NADH recycling by Treponema hyodysenteriae, the agent of swine dysentery.

作者信息

Stanton T B

机构信息

National Animal Disease Center, U.S. Department of Agriculture, Ames, Iowa 50010.

出版信息

Appl Environ Microbiol. 1989 Sep;55(9):2365-71. doi: 10.1128/aem.55.9.2365-2371.1989.

Abstract

Glucose metabolism and the mechanisms of NADH oxidation by Treponema hyodysenteriae were studied. Under an N2 atmosphere, washed cell suspensions of the spirochete consumed glucose and produced acetate, butyrate, H2, and CO2. Approximately twice as much H2 as CO2 was produced. Determinations of radioactivity in products of [14C]glucose and [14C]pyruvate metabolism and analyses of enzyme activities in cell lysates revealed that glucose was catabolized to pyruvate via the Embden-Meyerhof-Parnas pathway. The results of pyruvate exchange reactions with NaH14CO3 and Na14COOH demonstrated that pyruvate was converted to acetyl coenzyme A (acetyl-CoA), H2, and CO2 by a clostridium-type phosphoroclastic mechanism. NADH:ferredoxin oxidoreductase and hydrogenase activities were present in cell lysates and produced H2 from NADH oxidation. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-CoA. Butyrate was formed from acetyl-CoA via a pathway that involved 3-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, butyryl-CoA dehydrogenase, and butyryl-CoA transferase. T. hyodysenteriae cell suspensions generated less H2 and butyrate under 10% O2-90% N2 than under 100% N2. Cell lysates contained NADH oxidase, NADH peroxidase, and superoxide dismutase activities. These findings indicated there are three major mechanisms that T. hyodysenteriae cells use to recycle NADH generated from the Embden-Meyerhof-Parnas pathway--enzymes in the pathway from acetyl-CoA to butyrate, NADH:ferredoxin oxidoreductase, and NADH oxidase. Versatility in methods of NADH oxidation and an ability to metabolize oxygen could benefit T. hyodysenteriae cells in the colonization of tissues of the swine large bowel.

摘要

研究了猪痢疾密螺旋体的葡萄糖代谢及NADH氧化机制。在氮气氛围下,该螺旋体的洗涤细胞悬液消耗葡萄糖并产生乙酸盐、丁酸盐、氢气和二氧化碳。产生的氢气量约为二氧化碳的两倍。对[14C]葡萄糖和[14C]丙酮酸代谢产物的放射性测定以及细胞裂解物中酶活性的分析表明,葡萄糖通过糖酵解途径分解为丙酮酸。丙酮酸与NaH14CO3和Na14COOH的交换反应结果表明,丙酮酸通过梭菌型磷酸解机制转化为乙酰辅酶A(乙酰-CoA)、氢气和二氧化碳。细胞裂解物中存在NADH:铁氧化还原蛋白氧化还原酶和氢化酶活性,并通过NADH氧化产生氢气。磷酸转乙酰酶和乙酸激酶催化由乙酰-CoA形成乙酸盐。丁酸盐由乙酰-CoA通过一条涉及3-羟基丁酰辅酶A(CoA)脱氢酶、丁酰-CoA脱氢酶和丁酰-CoA转移酶的途径形成。与100%氮气条件下相比,猪痢疾密螺旋体细胞悬液在10%氧气-90%氮气条件下产生的氢气和丁酸盐较少。细胞裂解物含有NADH氧化酶、NADH过氧化物酶和超氧化物歧化酶活性。这些发现表明,猪痢疾密螺旋体细胞利用三种主要机制来循环利用糖酵解途径产生的NADH,即从乙酰-CoA到丁酸盐途径中的酶、NADH:铁氧化还原蛋白氧化还原酶和NADH氧化酶。NADH氧化方法的多样性以及代谢氧气的能力可能有利于猪痢疾密螺旋体细胞在猪大肠组织中的定殖。

相似文献

引用本文的文献

本文引用的文献

2
A new procedure for assay of bacterial hydrogenases.一种测定细菌氢化酶的新方法。
J Bacteriol. 1956 Jan;71(1):70-80. doi: 10.1128/jb.71.1.70-80.1956.
9
Carbohydrate metabolism in Spirochaeta stenostrepta.狭窄螺旋体中的碳水化合物代谢
J Bacteriol. 1970 Jul;103(1):216-26. doi: 10.1128/jb.103.1.216-226.1970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验