Suppr超能文献

基于结构导向的羟化酶重编程以卤化其小分子底物

Structure-Guided Reprogramming of a Hydroxylase To Halogenate Its Small Molecule Substrate.

作者信息

Mitchell Andrew J, Dunham Noah P, Bergman Jonathan A, Wang Bo, Zhu Qin, Chang Wei-Chen, Liu Xinyu, Boal Amie K

机构信息

Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States.

出版信息

Biochemistry. 2017 Jan 24;56(3):441-444. doi: 10.1021/acs.biochem.6b01173. Epub 2017 Jan 11.

Abstract

Enzymatic installation of chlorine/bromine into unactivated carbon centers provides a versatile, selective, and environmentally friendly alternative to chemical halogenation. Iron(II) and 2-(oxo)-glutarate (Fe/2OG)-dependent halogenases are powerful biocatalysts that are capable of cleaving aliphatic C-H bonds to introduce useful functional groups, including halogens. Using the structure of the Fe/2OG halogenase, WelO5, in complex with its small molecule substrate, we identified a similar N-acyl amino acid hydroxylase, SadA, and reprogrammed it to halogenate its substrate, thereby generating a new chiral haloalkyl center. The work highlights the potential of Fe/2OG enzymes as platforms for development of novel stereospecific catalysts for late-stage C-H functionalization.

摘要

通过酶促反应将氯/溴引入未活化的碳中心,为化学卤化提供了一种通用、选择性且环境友好的替代方法。铁(II)和2-(氧代)-戊二酸(Fe/2OG)依赖性卤化酶是强大的生物催化剂,能够裂解脂肪族C-H键以引入包括卤素在内的有用官能团。利用Fe/2OG卤化酶WelO5与其小分子底物形成的复合物的结构,我们鉴定出一种类似的N-酰基氨基酸羟化酶SadA,并对其进行重新编程以卤化其底物,从而产生一个新的手性卤代烷基中心。这项工作突出了Fe/2OG酶作为开发用于后期C-H官能化的新型立体特异性催化剂平台的潜力。

相似文献

1
Structure-Guided Reprogramming of a Hydroxylase To Halogenate Its Small Molecule Substrate.
Biochemistry. 2017 Jan 24;56(3):441-444. doi: 10.1021/acs.biochem.6b01173. Epub 2017 Jan 11.
2
Exploring the Biocatalytic Potential of Fe/α-Ketoglutarate-Dependent Halogenases.
Chemistry. 2020 Jun 10;26(33):7336-7345. doi: 10.1002/chem.201905752. Epub 2020 Apr 15.
3
Reaction pathway engineering converts a radical hydroxylase into a halogenase.
Nat Chem Biol. 2022 Feb;18(2):171-179. doi: 10.1038/s41589-021-00944-x. Epub 2021 Dec 22.
4
Enzymatic chlorination and bromination.
Methods Enzymol. 2012;516:237-57. doi: 10.1016/B978-0-12-394291-3.00004-6.
6
A new family of iron-dependent halogenases acts on freestanding substrates.
Nat Chem Biol. 2014 Nov;10(11):921-3. doi: 10.1038/nchembio.1625. Epub 2014 Sep 14.
7
Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes.
Inorg Chem. 2017 Nov 6;56(21):13382-13389. doi: 10.1021/acs.inorgchem.7b02113. Epub 2017 Sep 29.
8
Development of Halogenase Enzymes for Use in Synthesis.
Chem Rev. 2018 Jan 10;118(1):232-269. doi: 10.1021/acs.chemrev.7b00032. Epub 2017 May 3.
10
Evolved Aliphatic Halogenases Enable Regiocomplementary C-H Functionalization of a Pharmaceutically Relevant Compound.
Angew Chem Int Ed Engl. 2019 Dec 16;58(51):18535-18539. doi: 10.1002/anie.201907245. Epub 2019 Nov 18.

引用本文的文献

1
Tracing the stepwise Darwinian evolution of a plant halogenase.
Sci Adv. 2025 Aug 15;11(33):eadv6898. doi: 10.1126/sciadv.adv6898. Epub 2025 Aug 13.
3
Biochemical Studies of a Cyanobacterial Halogenase Support the Involvement of a Dimetal Cofactor.
Biochemistry. 2025 May 20;64(10):2173-2180. doi: 10.1021/acs.biochem.4c00720. Epub 2025 Apr 29.
5
Engineering the Reaction Pathway of a Non-heme Iron Oxygenase Using Ancestral Sequence Reconstruction.
J Am Chem Soc. 2024 Dec 18;146(50):34352-34363. doi: 10.1021/jacs.4c08420. Epub 2024 Dec 6.
6
Expanding the Diversity of the Cyanobacterial Dialkylresorcinol Bartoloside Family.
J Nat Prod. 2024 Dec 27;87(12):2709-2715. doi: 10.1021/acs.jnatprod.4c00832. Epub 2024 Nov 20.
7
Engineering non-haem iron enzymes for enantioselective C(sp3)-F bond formation via radical fluorine transfer.
Nat Synth. 2024 Aug;3(8):958-966. doi: 10.1038/s44160-024-00507-7. Epub 2024 Mar 28.
8
Probing Ferryl Reactivity in a Nonheme Iron Oxygenase Using an Expanded Genetic Code.
ACS Catal. 2024 Jul 20;14(15):11584-11590. doi: 10.1021/acscatal.4c02365. eCollection 2024 Aug 2.
9
Expanding chemistry through in vitro and in vivo biocatalysis.
Nature. 2024 Jul;631(8019):37-48. doi: 10.1038/s41586-024-07506-w. Epub 2024 Jul 3.
10
Radical ligand transfer: mechanism and reactivity governed by three-component thermodynamics.
Chem Sci. 2024 May 10;15(22):8459-8471. doi: 10.1039/d4sc01507j. eCollection 2024 Jun 5.

本文引用的文献

1
Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes.
Chem Sci. 2015 Jun 1;6(6):3454-3460. doi: 10.1039/c5sc00913h. Epub 2015 Apr 10.
2
Regioselective Dichlorination of a Non-Activated Aliphatic Carbon Atom and Phenolic Bismethylation by a Multifunctional Fungal Flavoenzyme.
Angew Chem Int Ed Engl. 2016 Sep 19;55(39):11955-9. doi: 10.1002/anie.201604516. Epub 2016 Aug 25.
3
Engineering Flavin-Dependent Halogenases.
Methods Enzymol. 2016;575:93-126. doi: 10.1016/bs.mie.2016.03.024. Epub 2016 Apr 26.
4
Application and Modification of Flavin-Dependent Halogenases.
Methods Enzymol. 2016;575:65-92. doi: 10.1016/bs.mie.2016.03.022. Epub 2016 May 6.
5
Structural basis for halogenation by iron- and 2-oxo-glutarate-dependent enzyme WelO5.
Nat Chem Biol. 2016 Aug;12(8):636-40. doi: 10.1038/nchembio.2112. Epub 2016 Jun 27.
6
Directed Evolution of RebH for Catalyst-Controlled Halogenation of Indole C-H Bonds.
Chem Sci. 2016 Jun 1;7(6):3720-3729. doi: 10.1039/C5SC04680G. Epub 2016 Feb 19.
8
Late-Stage Diversification of Biologically Active Molecules via Chemoenzymatic C-H Functionalization.
ACS Catal. 2016 Mar 4;6(3):1451-1454. doi: 10.1021/acscatal.5b02558. Epub 2016 Jan 25.
10
A Structure-Guided Switch in the Regioselectivity of a Tryptophan Halogenase.
Chembiochem. 2016 May 3;17(9):821-4. doi: 10.1002/cbic.201600051. Epub 2016 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验