Zhao Qun, Chen Zhenhong, Soler Jordi, Chen Xiahe, Rui Jinyan, Ji Nathan Tianlin, Yu Qinglan E, Yang Yunfang, Garcia-Borràs Marc, Huang Xiongyi
School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.
Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
Nat Synth. 2024 Aug;3(8):958-966. doi: 10.1038/s44160-024-00507-7. Epub 2024 Mar 28.
In recent years there has been a surge in the development of methods for the synthesis of organofluorine compounds. However, enzymatic methods for C-F bond formation have been limited to nucleophilic fluoride substitution. Here, we report the incorporation of iron-catalysed radical fluorine transfer, a reaction mechanism that is not used in naturally occurring enzymes, into enzymatic catalysis for the development of biocatalytic enantioselective C( )-F bond formation. Using this strategy, we repurposed ()-2-hydroxypropylphosphonate epoxidase from (HppE) to catalyse an -fluoroamide directed C( )-H fluorination. Directed evolution has enabled HppE to be optimized, forming diverse chiral benzylic fluoride products with turnover numbers of up to 180 and with excellent enantiocontrol (up to 94% e.e.). Mechanistic investigations showed that the N-F bond activation is the rate-determining step, and the strong preference for fluorination in the presence of excess NaN can be attributed to the spatial proximity of the carbon-centered radical to the iron-bound fluoride.
近年来,有机氟化合物合成方法的发展呈激增态势。然而,用于碳-氟键形成的酶促方法仅限于亲核氟取代反应。在此,我们报道了将铁催化的自由基氟转移反应(一种天然存在的酶中未使用的反应机制)引入酶促催化,以开发生物催化对映选择性碳()-氟键形成方法。利用这一策略,我们将来自()-2-羟丙基膦酸酯环氧化酶(HppE)进行改造,以催化α-氟酰胺导向的碳()-氢氟化反应。定向进化使HppE得以优化,形成了多种手性苄基氟产物,其周转数高达180,对映选择性优异(高达94% 对映体过量)。机理研究表明,N-F键活化是速率决定步骤,在过量NaN存在下对氟化反应的强烈偏好可归因于以碳为中心的自由基与铁结合的氟化物在空间上的接近。