Suppr超能文献

钒酰作为单核非血红素铁酶中反应性亚铁中间物的稳定结构模拟物。

Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes.

机构信息

Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States.

出版信息

Inorg Chem. 2017 Nov 6;56(21):13382-13389. doi: 10.1021/acs.inorgchem.7b02113. Epub 2017 Sep 29.

Abstract

The iron(II)- and 2-(oxo)glutarate-dependent (Fe/2OG) oxygenases catalyze an array of challenging transformations via a common iron(IV)-oxo (ferryl) intermediate, which in most cases abstracts hydrogen (H•) from an aliphatic carbon of the substrate. Although it has been shown that the relative disposition of the Fe-O and C-H bonds can control the rate of H• abstraction and fate of the resultant substrate radical, there remains a paucity of structural information on the actual ferryl states, owing to their high reactivity. We demonstrate here that the stable vanadyl ion [(V-oxo)] binds along with 2OG or its decarboxylation product, succinate, in the active site of two different Fe/2OG enzymes to faithfully mimic their transient ferryl states. Both ferryl and vanadyl complexes of the Fe/2OG halogenase, SyrB2, remain stably bound to its carrier protein substrate (l-aminoacyl-S-SyrB1), whereas the corresponding complexes harboring transition metals (Fe, Mn) in lower oxidation states dissociate. In the well-studied taurine:2OG dioxygenase (TauD), the disposition of the substrate C-H bond relative to the vanadyl ion defined by pulse electron paramagnetic resonance methods is consistent with the crystal structure of the reactant complex and computational models of the ferryl state. Vanadyl substitution may thus afford access to structural details of the key ferryl intermediates in this important enzyme class.

摘要

铁(II)和 2-(氧代)戊二酸依赖性(Fe/2OG)加氧酶通过常见的铁(IV)-氧(双氧)中间物催化一系列具有挑战性的转化,该中间物在大多数情况下从底物的脂肪族碳原子上提取氢(H•)。尽管已经表明 Fe-O 和 C-H 键的相对位置可以控制 H•提取的速率和生成的底物自由基的命运,但由于其高反应性,实际上对于双氧状态的结构信息仍然很少。我们在这里证明,稳定的钒酰离子 [(V-oxo)] 与 2OG 或其脱羧产物琥珀酸一起结合在两种不同的 Fe/2OG 酶的活性部位中,以忠实地模拟它们的瞬态双氧状态。Fe/2OG 卤代酶 SyrB2 的双氧和钒酰配合物仍然稳定地结合到其载体蛋白底物(l-氨酰-S-SyrB1)上,而含有较低氧化态过渡金属(Fe、Mn)的相应配合物则会解离。在研究充分的牛磺酸:2OG 加氧酶(TauD)中,脉冲电子顺磁共振方法定义的底物 C-H 键相对于钒酰离子的位置与反应复合物的晶体结构和双氧状态的计算模型一致。因此,钒取代可能提供了对该重要酶类中关键双氧中间体的结构细节的了解。

相似文献

1
Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes.
Inorg Chem. 2017 Nov 6;56(21):13382-13389. doi: 10.1021/acs.inorgchem.7b02113. Epub 2017 Sep 29.
2
Structure of a Ferryl Mimic in the Archetypal Iron(II)- and 2-(Oxo)-glutarate-Dependent Dioxygenase, TauD.
Biochemistry. 2019 Oct 15;58(41):4218-4223. doi: 10.1021/acs.biochem.9b00598. Epub 2019 Oct 2.
7
How Do Differences in Electronic Structure Affect the Use of Vanadium Intermediates as Mimics in Nonheme Iron Hydroxylases?
Inorg Chem. 2024 Mar 18;63(11):4997-5011. doi: 10.1021/acs.inorgchem.3c04421. Epub 2024 Mar 1.
9
Two interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3.
Nat Chem Biol. 2007 Feb;3(2):113-6. doi: 10.1038/nchembio856. Epub 2007 Jan 14.
10
Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes.
Acc Chem Res. 2014 Apr 15;47(4):1146-54. doi: 10.1021/ar400258p. Epub 2014 Feb 13.

引用本文的文献

3
Probing Ferryl Reactivity in a Nonheme Iron Oxygenase Using an Expanded Genetic Code.
ACS Catal. 2024 Jul 20;14(15):11584-11590. doi: 10.1021/acscatal.4c02365. eCollection 2024 Aug 2.
5
Synergistic Binding of the Halide and Cationic Prime Substrate of l-Lysine 4-Chlorinase, BesD, in Both Ferrous and Ferryl States.
Biochemistry. 2023 Aug 15;62(16):2480-2491. doi: 10.1021/acs.biochem.3c00248. Epub 2023 Aug 5.
7
H-HYSCORE Reveals Structural Details at the Fe(II) Active Site of Taurine:2-Oxoglutarate Dioxygenase.
Appl Magn Reson. 2021 Aug;52(8):971-994. doi: 10.1007/s00723-020-01288-w. Epub 2020 Oct 28.
8
Biomimetic Iron Complex Achieves TET Enzyme Reactivity*.
Angew Chem Int Ed Engl. 2021 Sep 20;60(39):21457-21463. doi: 10.1002/anie.202107277. Epub 2021 Aug 20.
9
Biochemical and crystallographic investigations into isonitrile formation by a nonheme iron-dependent oxidase/decarboxylase.
J Biol Chem. 2021 Jan-Jun;296:100231. doi: 10.1074/jbc.RA120.015932. Epub 2021 Jan 7.

本文引用的文献

1
Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase.
J Am Chem Soc. 2017 Oct 4;139(39):13830-13836. doi: 10.1021/jacs.7b07374. Epub 2017 Sep 20.
2
Structural and stereoelectronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4667-4672. doi: 10.1073/pnas.1617760114. Epub 2017 Apr 18.
3
Structural basis for halogenation by iron- and 2-oxo-glutarate-dependent enzyme WelO5.
Nat Chem Biol. 2016 Aug;12(8):636-40. doi: 10.1038/nchembio.2112. Epub 2016 Jun 27.
4
Experimental and theoretical correlations between vanadium K-edge X-ray absorption and Kβ emission spectra.
J Biol Inorg Chem. 2016 Sep;21(5-6):793-805. doi: 10.1007/s00775-016-1358-7. Epub 2016 Jun 1.
6
Endoperoxide formation by an α-ketoglutarate-dependent mononuclear non-haem iron enzyme.
Nature. 2015 Nov 26;527(7579):539-543. doi: 10.1038/nature15519. Epub 2015 Nov 2.
7
Assembly of the unusual oxacycles in the orthosomycin antibiotics.
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):11989-90. doi: 10.1073/pnas.1514689112. Epub 2015 Sep 16.
8
Oxidative cyclizations in orthosomycin biosynthesis expand the known chemistry of an oxygenase superfamily.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11547-52. doi: 10.1073/pnas.1500964112. Epub 2015 Aug 3.
9
Experimental Correlation of Substrate Position with Reaction Outcome in the Aliphatic Halogenase, SyrB2.
J Am Chem Soc. 2015 Jun 3;137(21):6912-9. doi: 10.1021/jacs.5b03370. Epub 2015 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验