Suppr超能文献

癌症代谢:不仅仅为生长提供能量

Cancer Metabolism: Fueling More than Just Growth.

作者信息

Lee Namgyu, Kim Dohoon

机构信息

Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.

出版信息

Mol Cells. 2016 Dec;39(12):847-854. doi: 10.14348/molcells.2016.0310. Epub 2016 Dec 29.

Abstract

The early landmark discoveries in cancer metabolism research have uncovered metabolic processes that support rapid proliferation, such as aerobic glycolysis (Warburg effect), glutaminolysis, and increased nucleotide biosynthesis. However, there are limitations to the effectiveness of specifically targeting the metabolic processes which support rapid proliferation. First, as other normal proliferative tissues also share similar metabolic features, they may also be affected by such treatments. Secondly, targeting proliferative metabolism may only target the highly proliferating "bulk tumor" cells and not the slower-growing, clinically relevant cancer stem cell subpopulations which may be required for an effective cure. An emerging body of research indicates that altered metabolism plays key roles in supporting proliferation-independent functions of cancer such as cell survival within the ischemic and acidic tumor microenvironment, immune system evasion, and maintenance of the cancer stem cell state. As these aspects of cancer cell metabolism are critical for tumor maintenance yet are less likely to be relevant in normal cells, they represent attractive targets for cancer therapy.

摘要

癌症代谢研究中的早期标志性发现揭示了支持快速增殖的代谢过程,如有氧糖酵解(瓦伯格效应)、谷氨酰胺分解和核苷酸生物合成增加。然而,特异性靶向支持快速增殖的代谢过程的有效性存在局限性。首先,由于其他正常增殖组织也具有相似的代谢特征,它们也可能受到此类治疗的影响。其次,靶向增殖性代谢可能仅针对高度增殖的“实体瘤”细胞,而无法针对生长较慢但对有效治愈可能至关重要的临床相关癌症干细胞亚群。越来越多的研究表明,代谢改变在支持癌症的增殖非依赖性功能中起关键作用,如在缺血和酸性肿瘤微环境中的细胞存活、逃避免疫系统以及维持癌症干细胞状态。由于癌细胞代谢的这些方面对肿瘤维持至关重要,但在正常细胞中不太可能相关,因此它们是癌症治疗的有吸引力的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ecb/5223101/a4202a33251e/molce-39-12-847f1.jpg

相似文献

1
Cancer Metabolism: Fueling More than Just Growth.
Mol Cells. 2016 Dec;39(12):847-854. doi: 10.14348/molcells.2016.0310. Epub 2016 Dec 29.
2
Linking tumor glycolysis and immune evasion in cancer: Emerging concepts and therapeutic opportunities.
Biochim Biophys Acta Rev Cancer. 2017 Aug;1868(1):212-220. doi: 10.1016/j.bbcan.2017.04.002. Epub 2017 Apr 8.
3
Cancer stem cell metabolism: a potential target for cancer therapy.
Mol Cancer. 2016 Nov 8;15(1):69. doi: 10.1186/s12943-016-0555-x.
4
Glycolysis, the sweet appetite of the tumor microenvironment.
Cancer Lett. 2024 Sep 28;600:217156. doi: 10.1016/j.canlet.2024.217156. Epub 2024 Aug 8.
6
The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
Int J Radiat Biol. 2019 Jul;95(7):912-919. doi: 10.1080/09553002.2019.1589653. Epub 2019 Mar 22.
7
Altered metabolism in cancer: insights into energy pathways and therapeutic targets.
Mol Cancer. 2024 Sep 18;23(1):203. doi: 10.1186/s12943-024-02119-3.
8
Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype.
Crit Rev Biochem Mol Biol. 2018 Dec;53(6):667-682. doi: 10.1080/10409238.2018.1556578. Epub 2019 Jan 22.
9
Immunological Aspects of Cancer Cell Metabolism.
Int J Mol Sci. 2024 May 13;25(10):5288. doi: 10.3390/ijms25105288.
10
Cancer cell metabolism: one hallmark, many faces.
Cancer Discov. 2012 Oct;2(10):881-98. doi: 10.1158/2159-8290.CD-12-0345. Epub 2012 Sep 25.

引用本文的文献

1
Multifaceted role of serine hydroxymethyltransferase in health and disease.
Mol Cells. 2025 Sep;48(9):100262. doi: 10.1016/j.mocell.2025.100262. Epub 2025 Jul 28.
2
Development of novel mitochondrial pyruvate carrier inhibitors for breast cancer treatment.
J Biol Chem. 2025 Jul 16;301(8):110486. doi: 10.1016/j.jbc.2025.110486.
3
Extracellular flux assay (Seahorse assay): Diverse applications in metabolic research across biological disciplines.
Mol Cells. 2024 Aug;47(8):100095. doi: 10.1016/j.mocell.2024.100095. Epub 2024 Jul 18.
4
Biological impact and therapeutic implication of tumor-associated macrophages in hepatocellular carcinoma.
Cell Death Dis. 2024 Jul 12;15(7):498. doi: 10.1038/s41419-024-06888-z.
5
Altered lipid metabolism as a predisposing factor for liver metastasis in MASLD.
Mol Cells. 2024 Feb;47(2):100010. doi: 10.1016/j.mocell.2024.100010. Epub 2024 Jan 17.
6
Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions.
Antioxidants (Basel). 2023 Nov 29;12(12):2056. doi: 10.3390/antiox12122056.
7
Knowledge mapping and current trends of Warburg effect in the field of cancer.
Front Oncol. 2023 Oct 26;13:1264083. doi: 10.3389/fonc.2023.1264083. eCollection 2023.
8
HuR-induced circ_0082319 contributes to hepatocellular carcinoma by elevating PTK2 through miR-505-3p.
Naunyn Schmiedebergs Arch Pharmacol. 2024 May;397(5):3111-3126. doi: 10.1007/s00210-023-02793-y. Epub 2023 Oct 25.
9
Phenolic Compounds of L. as the Potential Alternative Therapy in the Treatment of Chronic Diseases.
Int J Mol Sci. 2023 Jul 31;24(15):12293. doi: 10.3390/ijms241512293.
10
The strict regulation of HIF-1α by non-coding RNAs: new insight towards proliferation, metastasis, and therapeutic resistance strategies.
Cancer Metastasis Rev. 2024 Mar;43(1):5-27. doi: 10.1007/s10555-023-10129-8. Epub 2023 Aug 8.

本文引用的文献

1
LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells.
Cell Metab. 2016 Nov 8;24(5):657-671. doi: 10.1016/j.cmet.2016.08.011. Epub 2016 Sep 15.
2
Serine and one-carbon metabolism in cancer.
Nat Rev Cancer. 2016 Oct;16(10):650-62. doi: 10.1038/nrc.2016.81. Epub 2016 Sep 16.
3
Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition.
Nature. 2016 Aug 31;537(7621):544-547. doi: 10.1038/nature19353.
4
Hallmarks of cancer stem cell metabolism.
Br J Cancer. 2016 Jun 14;114(12):1305-12. doi: 10.1038/bjc.2016.152. Epub 2016 May 24.
5
Cancer immunotherapy: the beginning of the end of cancer?
BMC Med. 2016 May 5;14:73. doi: 10.1186/s12916-016-0623-5.
6
Metabolic Modification in Gastrointestinal Cancer Stem Cells: Characteristics and Therapeutic Approaches.
J Cell Physiol. 2016 Oct;231(10):2081-7. doi: 10.1002/jcp.25318. Epub 2016 Feb 2.
7
Hypoxia-Driven Adenosine Accumulation: A Crucial Microenvironmental Factor Promoting Tumor Progression.
Adv Exp Med Biol. 2016;876:177-183. doi: 10.1007/978-1-4939-3023-4_22.
8
MERAV: a tool for comparing gene expression across human tissues and cell types.
Nucleic Acids Res. 2016 Jan 4;44(D1):D560-6. doi: 10.1093/nar/gkv1337. Epub 2015 Nov 30.
9
Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses.
Cell. 2015 Sep 10;162(6):1217-28. doi: 10.1016/j.cell.2015.08.012. Epub 2015 Aug 27.
10
Hypoxia Induces Production of L-2-Hydroxyglutarate.
Cell Metab. 2015 Aug 4;22(2):304-11. doi: 10.1016/j.cmet.2015.06.023. Epub 2015 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验