Suppr超能文献

基于余弦相关和局部网络相似性比较的新鲜天然药物分子的初步筛选

Targets preliminary screening for the fresh natural drug molecule based on Cosine-correlation and similarity-comparison of local network.

机构信息

School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China.

Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical Sciences, Beijing, 100700, China.

出版信息

J Transl Med. 2022 Feb 3;20(1):67. doi: 10.1186/s12967-022-03279-w.

Abstract

BACKGROUND

Chinese herbal medicine is made up of hundreds of natural drug molecules and has played a major role in traditional Chinese medicine (TCM) for several thousand years. Therefore, it is of great significance to study the target of natural drug molecules for exploring the mechanism of treating diseases with TCM. However, it is very difficult to determine the targets of a fresh natural drug molecule due to the complexity of the interaction between drug molecules and targets. Compared with traditional biological experiments, the computational method has the advantages of less time and low cost for targets screening, but it remains many great challenges, especially for the molecules without social ties.

METHODS

This study proposed a novel method based on the Cosine-correlation and Similarity-comparison of Local Network (CSLN) to perform the preliminary screening of targets for the fresh natural drug molecules and assign weights to them through a trained parameter.

RESULTS

The performance of CSLN is superior to the popular drug-target-interaction (DTI) prediction model GRGMF on the gold standard data in the condition that is drug molecules are the objects for training and testing. Moreover, CSLN showed excellent ability in checking the targets screening performance for a fresh-natural-drug-molecule (scenario simulation) on the TCMSP (13 positive samples in top20), meanwhile, Western-Blot also further verified the accuracy of CSLN.

CONCLUSIONS

In summary, the results suggest that CSLN can be used as an alternative strategy for screening targets of fresh natural drug molecules.

摘要

背景

中草药由数百种天然药物分子组成,在中国传统医学(TCM)中已有数千年的历史,因此,研究天然药物分子的靶点对于探索用 TCM 治疗疾病的机制具有重要意义。然而,由于药物分子与靶点之间相互作用的复杂性,确定新鲜天然药物分子的靶点非常困难。与传统的生物实验相比,计算方法在靶点筛选方面具有时间短、成本低的优点,但仍存在许多巨大的挑战,特别是对于没有社会关系的分子。

方法

本研究提出了一种基于余弦相关和局部网络相似性比较(CSLN)的新方法,用于对新鲜天然药物分子的靶点进行初步筛选,并通过训练参数为其分配权重。

结果

在以药物分子为训练和测试对象的情况下,CSLN 的性能优于流行的药物-靶标相互作用(DTI)预测模型 GRGMF 在金标准数据上的性能。此外,CSLN 在 TCMSP (前 20 个中有 13 个阳性样本)上对新鲜天然药物分子的靶点筛选性能检查中表现出出色的能力,同时 Western-Blot 也进一步验证了 CSLN 的准确性。

结论

总之,结果表明 CSLN 可作为筛选新鲜天然药物分子靶点的替代策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243d/8812203/10b69f99fbca/12967_2022_3279_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验