Suppr超能文献

利用合成偶极子辅助纳米孔介电泳实现遗传生物标志物的无干扰检测。

Interference-Free Detection of Genetic Biomarkers Using Synthetic Dipole-Facilitated Nanopore Dielectrophoresis.

机构信息

Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri 65211, United States.

Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.

出版信息

ACS Nano. 2017 Feb 28;11(2):1204-1213. doi: 10.1021/acsnano.6b07570. Epub 2017 Jan 6.

Abstract

The motion of polarizable particles in a nonuniform electric field (i.e., dielectrophoresis) has been extensively used for concentration, separation, sorting, and transport of biological particles from cancer cells and viruses to biomolecules such as DNAs and proteins. However, current approaches to dielectrophoretic manipulation are not sensitive enough to selectively target individual molecular species. Here, we describe the application of the dielectrophoretic principle for selective detection of DNA and RNA molecules using an engineered biological nanopore. The key element of our approach is a synthetic polycationic nanocarrier that selectively binds to the target biomolecules, dramatically increasing their dielectrophoretic response to the electric field gradient generated by the nanopore. The dielectrophoretic capture of the nanocarrier-target complexes is detected as a transient blockade of the nanopore ionic current, while any nontarget nucleic acids are repelled from the nanopore by electrophoresis and thus do not interfere with the signal produced by the target's capture. Strikingly, we show that even modestly charged nanocarriers can be used to capture DNA or RNA molecules of any length or secondary structure and simultaneously detect several molecular targets. Such selective, multiplex molecular detection technology would be highly desirable for real-time analysis of complex clinical samples.

摘要

在非均匀电场中(即介电泳),可极化粒子的运动已被广泛用于生物粒子(从癌细胞和病毒到生物分子如 DNA 和蛋白质)的浓缩、分离、分类和输送。然而,目前的介电泳操作方法不够灵敏,无法选择性地针对单个分子种类。在这里,我们描述了利用工程化生物纳米孔选择性检测 DNA 和 RNA 分子的介电泳原理。我们方法的关键要素是一种合成的聚阳离子纳米载体,它能选择性地与靶生物分子结合,显著提高它们对纳米孔产生的电场梯度的介电泳响应。纳米载体-靶复合物的介电泳捕获被检测为纳米孔离子电流的瞬时阻断,而任何非靶核酸则通过电泳被排斥出纳米孔,因此不会干扰靶捕获产生的信号。引人注目的是,我们表明,即使是带轻微电荷的纳米载体也可用于捕获任何长度或二级结构的 DNA 或 RNA 分子,同时检测多个分子靶标。这种选择性的、多重分子检测技术对于实时分析复杂的临床样本非常理想。

相似文献

6
Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores.加热纳米孔中DNA捕获与转运的分子动力学模拟
ACS Appl Mater Interfaces. 2016 May 25;8(20):12599-608. doi: 10.1021/acsami.6b00463. Epub 2016 Mar 21.

引用本文的文献

2
3
Nanopore Detection Using Supercharged Polypeptide Molecular Carriers.利用超荷多肽分子载体进行纳米孔检测。
J Am Chem Soc. 2023 Mar 22;145(11):6371-6382. doi: 10.1021/jacs.2c13465. Epub 2023 Mar 10.
4
A review of polystyrene bead manipulation by dielectrophoresis.介电泳操控聚苯乙烯微珠的综述。
RSC Adv. 2019 Feb 8;9(9):4963-4981. doi: 10.1039/c8ra09017c. eCollection 2019 Feb 5.

本文引用的文献

5
Decoding long nanopore sequencing reads of natural DNA.解码天然DNA的长纳米孔测序读数。
Nat Biotechnol. 2014 Aug;32(8):829-33. doi: 10.1038/nbt.2950. Epub 2014 Jun 25.
8
Chemosensing ensembles for monitoring biomembrane transport in real time.用于实时监测生物膜转运的化学感应组合。
Angew Chem Int Ed Engl. 2014 Mar 3;53(10):2762-5. doi: 10.1002/anie.201309583. Epub 2014 Jan 27.
9
Detection of 3'-end RNA uridylation with a protein nanopore.用蛋白纳米孔检测 3'-末端 RNA 尿嘧啶化。
ACS Nano. 2014 Feb 25;8(2):1364-74. doi: 10.1021/nn4050479. Epub 2013 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验