Department of Chemistry, Imperial College London, Molecular Science Research Hub, London W12 0BZ, U.K.
DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany.
J Am Chem Soc. 2023 Mar 22;145(11):6371-6382. doi: 10.1021/jacs.2c13465. Epub 2023 Mar 10.
The analysis at the single-molecule level of proteins and their interactions can provide critical information for understanding biological processes and diseases, particularly for proteins present in biological samples with low copy numbers. Nanopore sensing is an analytical technique that allows label-free detection of single proteins in solution and is ideally suited to applications, such as studying protein-protein interactions, biomarker screening, drug discovery, and even protein sequencing. However, given the current spatiotemporal limitations in protein nanopore sensing, challenges remain in controlling protein translocation through a nanopore and relating protein structures and functions with nanopore readouts. Here, we demonstrate that supercharged unstructured polypeptides (SUPs) can be genetically fused with proteins of interest and used as molecular carriers to facilitate nanopore detection of proteins. We show that cationic SUPs can substantially slow down the translocation of target proteins due to their electrostatic interactions with the nanopore surface. This approach enables the differentiation of individual proteins with different sizes and shapes via characteristic subpeaks in the nanopore current, thus facilitating a viable route to use polypeptide molecular carriers to control molecular transport and as a potential system to study protein-protein interactions at the single-molecule level.
在单分子水平上分析蛋白质及其相互作用可以为理解生物过程和疾病提供关键信息,特别是对于生物样本中数量较少的蛋白质。纳米孔传感是一种分析技术,可在溶液中对单个蛋白质进行无标记检测,非常适合于研究蛋白质-蛋白质相互作用、生物标志物筛选、药物发现,甚至蛋白质测序等应用。然而,鉴于目前蛋白质纳米孔传感的时空限制,在控制蛋白质通过纳米孔的易位以及将蛋白质结构和功能与纳米孔读数相关联方面仍然存在挑战。在这里,我们证明超荷电无规多肽(SUPs)可以与感兴趣的蛋白质进行基因融合,并用作分子载体来促进蛋白质的纳米孔检测。我们表明,由于带正电荷的 SUPs 与纳米孔表面的静电相互作用,它们可以显著减缓目标蛋白质的易位。这种方法可以通过纳米孔电流中的特征次峰区分具有不同大小和形状的单个蛋白质,从而为使用多肽分子载体来控制分子输运提供了可行的途径,并为在单分子水平上研究蛋白质-蛋白质相互作用提供了一种潜在的系统。