Suppr超能文献

玉米全基因组关联研究:赞美与展望。

Genome-wide Association Studies in Maize: Praise and Stargaze.

机构信息

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.

Synergetic Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China.

出版信息

Mol Plant. 2017 Mar 6;10(3):359-374. doi: 10.1016/j.molp.2016.12.008. Epub 2016 Dec 27.

Abstract

Genome-wide association study (GWAS) has become a widely accepted strategy for decoding genotype-phenotype associations in many species thanks to advances in next-generation sequencing (NGS) technologies. Maize is an ideal crop for GWAS and significant progress has been made in the last decade. This review summarizes current GWAS efforts in maize functional genomics research and discusses future prospects in the omics era. The general goal of GWAS is to link genotypic variations to corresponding differences in phenotype using the most appropriate statistical model in a given population. The current review also presents perspectives for optimizing GWAS design and analysis. GWAS analysis of data from RNA, protein, and metabolite-based omics studies is discussed, along with new models and new population designs that will identify causes of phenotypic variation that have been hidden to date. The joint and continuous efforts of the whole community will enhance our understanding of maize quantitative traits and boost crop molecular breeding designs.

摘要

全基因组关联研究(GWAS)得益于新一代测序(NGS)技术的进步,已成为解码许多物种基因型-表型关联的广泛接受的策略。玉米是 GWAS 的理想作物,在过去十年中取得了重大进展。本综述总结了玉米功能基因组学研究中当前的 GWAS 工作,并讨论了组学时代的未来前景。GWAS 的总体目标是使用给定群体中最合适的统计模型将基因型变异与表型的相应差异联系起来。本综述还提出了优化 GWAS 设计和分析的观点。讨论了基于 RNA、蛋白质和代谢物的组学研究数据的 GWAS 分析,以及新的模型和新的群体设计,这些将识别迄今为止隐藏的表型变异的原因。整个社区的共同和持续努力将增强我们对玉米数量性状的理解,并推动作物分子育种设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验