Suppr超能文献

基于 iTRAQ 的氟喹诺酮类耐药金黄色葡萄球菌蛋白质组分析。

iTRAQ-based proteome analysis of fluoroquinolone-resistant Staphylococcus aureus.

机构信息

School of Biotechnology, Ho Chi Minh City International University, Vietnam National University HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.

Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.

出版信息

J Glob Antimicrob Resist. 2017 Mar;8:82-89. doi: 10.1016/j.jgar.2016.11.003. Epub 2016 Dec 27.

Abstract

OBJECTIVES

The aim of this study was to compare global protein expression changes during fluoroquinolone (FQ) exposure of Staphylococcus aureus.

METHODS

Total protein extracts of wild-type S. aureus ATCC 29213 and six multidrug-resistant (MDR) strains derived from the wild-type under different FQ exposures were analysed using the 8-plex isobaric tag for relative and absolute quantitation (iTRAQ) method combined with LC-MS/MS analysis. Differentially expressed proteins were searched for their Gene Ontology (GO) annotation (UniProt database) and protein-protein interaction network (STRING v.10.0). recA expression was determined by real-time quantitative reverse transcription PCR (qRT-PCR) analysis.

RESULTS

Overall, 582 unique proteins were identified at a confidence level of >95% (unused cut-off >1.3). After strict filtering for proteins with significant expression changes in comparison with the wild-type S. aureus ATCC 29213, 147 unique proteins were identified. GO searching showed that development of FQ resistance was associated with altered expression of various proteins involved in the SOS response (RecA), antibiotic resistance (MgrA), pathogenesis (uncharacterised leukocidin-like proteins 1 and 2, immunoglobulin-binding protein Sbi, triosephosphate isomerase, enolase, EsxA, SaeR, SarA, MgrA) and the stress response (alkyl hydroperoxide reductase subunit C, ClpB, ClpC, ClpL, ClpX, HslU, l-lactate dehydrogenase 1 and 2, SAV1710). Network analysis of antibiotic resistance-related proteins identified three major protein clusters involved in metabolic pathways, aminoacyl-tRNA biosynthesis and ribosome structure. qRT-PCR results were consistent with the proteomics data.

CONCLUSIONS

Development of resistance to multiple drugs, including FQs, under drug exposure mostly involves upregulation of SOS and stress response proteins.

摘要

目的

本研究旨在比较氟喹诺酮(FQ)暴露时金黄色葡萄球菌的整体蛋白质表达变化。

方法

使用 8 通道相对和绝对定量同位素标记(iTRAQ)方法结合 LC-MS/MS 分析,对野生型金黄色葡萄球菌 ATCC 29213 和从野生型衍生的 6 株多药耐药(MDR)菌株在不同 FQ 暴露下的总蛋白提取物进行分析。对差异表达蛋白进行基因本体论(GO)注释(UniProt 数据库)和蛋白质-蛋白质相互作用网络(STRING v.10.0)搜索。通过实时定量逆转录 PCR(qRT-PCR)分析确定 recA 表达。

结果

总体而言,在置信水平>95%(未使用截止值>1.3)下鉴定出 582 种独特蛋白质。与野生型金黄色葡萄球菌 ATCC 29213 相比,经过严格筛选,确定了 147 种具有显著表达变化的独特蛋白质。GO 搜索表明,FQ 耐药性的发展与 SOS 反应(RecA)、抗生素耐药性(MgrA)、发病机制(未表征的白细胞毒素样蛋白 1 和 2、免疫球蛋白结合蛋白 Sbi、磷酸丙糖异构酶、烯醇酶、EsxA、SaeR、SarA、MgrA)和应激反应(烷基氢过氧化物还原酶亚基 C、ClpB、ClpC、ClpL、ClpX、HslU、l-乳酸脱氢酶 1 和 2、SAV1710)中各种参与的蛋白质表达改变有关。抗生素耐药性相关蛋白的网络分析确定了三个主要的蛋白质簇,涉及代谢途径、氨酰-tRNA 生物合成和核糖体结构。qRT-PCR 结果与蛋白质组学数据一致。

结论

在药物暴露下,包括 FQ 在内的多种药物耐药性的发展主要涉及 SOS 和应激反应蛋白的上调。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验