Aunmeungtong W, Khongkhunthian P, Rungsiyakull P
Center of Excellence for Dental Implantology, Faculty of Dentistry, Chiang Mai University, Thailand.
Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Thailand.
Oral Implantol (Rome). 2016 Nov 16;9(4):202-212. doi: 10.11138/orl/2016.9.4.202. eCollection 2016 Oct-Dec.
Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process.
Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs.
Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution.
There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models.
Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models.
Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant should exhibit the same behavior to chewing force.
在种植体设计过程中,有限元分析(FEA)已被用于预测牙种植体部件与骨之间的应力和应变。
本研究的目的是表征和分析骨和种植体中发生的应力和应变分布,并比较三种不同种植体设计的应力和应变。
本研究纳入了三种不同的微型牙种植体设计:1. 具有内部种植体-基台连接的微型牙种植体(MDIi);2. 具有外部种植体-基台连接的微型牙种植体(MDIe);3. 一体式微型牙种植体(MDIs)。所有种植体设计均使用微型计算机断层扫描(micro-CT)进行扫描。种植体的成像细节用于模拟有限元分析模型。构建了尺寸为9×9毫米的人工骨体积,每个种植体分别放置在每个骨模型的中心。使用计算机软件在种植体顶部施加100牛的轴向压缩力和100牛的45度力,对所有骨-种植体模型进行模拟加载,以评估应力和应变分布。
三种种植体设计之间的应力或应变没有差异。所有三种微型牙种植体设计中发生的应力和应变主要集中在骨-种植体界面周围的皮质骨处。45°斜向加载导致所有种植体模型中的变形、应力和应变的大小及分布增加。
在本研究的范围内,MDIi骨和种植体模型中的平均应力和应变与MDIe和MDIs的相似。45°斜向加载在显著增加所有骨-种植体模型中的平均应力和应变方面起重要作用。
具有外部或内部连接的微型牙种植体与一体式微型牙种植体具有相似的应力分布。在临床情况下,这三种类型的微型牙种植体在咀嚼力作用下应表现出相同的行为。