Saidov Kamoladdin, Razzokov Jamoliddin, Parpiev Odilkhuja, Yüzbasi Nur Sena, Kovalska Natalia, Blugan Gurdial, Ruzimuradov Olim
Department of Electronics and Radio Engineering, Tashkent University of Information Technologies, Tashkent 100200, Uzbekistan.
Department of Information Technologies, Tashkent International University of Education, Tashkent 100207, Uzbekistan.
Nanomaterials (Basel). 2023 Sep 15;13(18):2559. doi: 10.3390/nano13182559.
2H MoTe (molybdenum ditelluride) has generated significant interest because of its superconducting, nonvolatile memory, and semiconducting of new materials, and it has a large range of electrical properties. The combination of transition metal dichalcogenides (TMDCs) and two dimensional (2D) materials like hexagonal boron nitride (h-BN) in lateral heterostructures offers a unique platform for designing and engineering novel electronic devices. We report the fabrication of highly conductive interfaces in crystalline ionic liquid-gated (ILG) field-effect transistors (FETs) consisting of a few layers of MoTe/h-BN heterojunctions. In our initial exploration of tellurium-based semiconducting TMDs, we directed our attention to MoTe crystals with thicknesses exceeding 12 nm. Our primary focus centered on investigating the transport characteristics and quantitatively assessing the surface interface heterostructure. Our transconductance () measurements indicate that the very efficient carrier modulation with an ILG FET is two times larger than standard back gating, and it demonstrates unipolarity of the device. The ILG FET exhibited highly unipolar p-type behavior with a high on/off ratio, and it significantly increased the mobility in MoTe/h-BN heterochannels, achieving improvement as one of the highest recorded mobility increments. Specifically, we observed hole and electron mobility values ranging from 345 cm V s to 285 cm V s at 80 K. We predict that our ability to observe the intrinsic, heterointerface conduction in the channels was due to a drastic reduction of the Schottky barriers, and electrostatic gating is suggested as a method for controlling the phase transitions in the few layers of TMDC FETs. Moreover, the simultaneous structural phase transitions throughout the sample, achieved through electrostatic doping control, presents new opportunities for developing phase change devices using atomically thin membranes.
二碲化钼(2H MoTe)因其超导性、非易失性存储器以及新型材料的半导体特性而备受关注,并且具有广泛的电学性质。过渡金属二硫属化物(TMDCs)与二维(2D)材料(如六方氮化硼(h-BN))在横向异质结构中的结合,为设计和制造新型电子器件提供了一个独特的平台。我们报道了在由几层MoTe/h-BN异质结组成的晶体离子液体门控(ILG)场效应晶体管(FET)中制备高导电界面的方法。在我们对碲基半导体TMDs的初步探索中,我们将注意力集中在厚度超过12 nm的MoTe晶体上。我们的主要重点是研究传输特性并定量评估表面界面异质结构。我们的跨导()测量表明,ILG FET非常有效的载流子调制比标准背栅调制大两倍,并且证明了器件的单极性。ILG FET表现出高度单极性的p型行为,具有高的开/关比,并且显著提高了MoTe/h-BN异质通道中的迁移率,实现了作为记录的最高迁移率增量之一的改善。具体而言,我们在80 K时观察到空穴和电子迁移率值在345 cm² V⁻¹ s⁻¹ 到285 cm² V⁻¹ s⁻¹ 之间。我们预测,我们能够观察到通道中的本征、异质界面传导是由于肖特基势垒的大幅降低,并且静电门控被认为是控制几层TMDC FET中相变的一种方法。此外,通过静电掺杂控制在整个样品中实现的同时结构相变,为使用原子级薄膜开发相变器件提供了新的机会。