Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley , 208A Stanley Hall, Berkeley, California 94720-1762, United States.
Department of Chemical Engineering, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
ACS Nano. 2017 Jan 24;11(1):675-683. doi: 10.1021/acsnano.6b06985. Epub 2017 Jan 9.
Bacteria have evolved as intelligent microorganisms that can colonize and form highly structured and cooperative multicellular communities with sophisticated singular and collective behaviors. The initial stages of colony formation and intercellular communication are particularly important to understand and depend highly on the spatial organization of cells. Controlling the distribution and growth of bacterial cells at the nanoscale is, therefore, of great interest in understanding the mechanisms of cell-cell communication at the initial stages of colony formation. Staphyloccocus aureus, a ubiquitous human pathogen, is of specific clinical importance due to the rise of antibiotic resistant strains of this species, which can cause life-threatening infections. Although several methods have attempted to pattern bacterial cells onto solid surfaces at single cell resolution, no study has truly controlled the 3D architectures of growing colonies. Herein, we present a simple, low-cost method to pattern S. aureus bacterial colonies and control the architecture of their growth. Using the wetting properties of micropatterened poly(dimethyl siloxane) platforms, with help from the physiological activities of the S. aureus cells, we fabricated connected networks of bacterial microcolonies of various sizes. Unlike conventional heterogeneous growth of biofilms on surfaces, the patterned S. aureus microcolonies in this work grow radially from nanostrings of a few bacterial cells, to form micrometer-thick rods when provided with a nutrient rich environment. This simple, efficient, and low-cost method can be used as a platform for studies of cell-cell communication phenomena, such as quorum sensing, horizontal gene transfer, and metabolic cross-feeding especially during initial stages of colony formation.
细菌已经进化成为智能微生物,可以在复杂的单细胞和群体行为下,在特定的环境中形成高度结构化和协作的多细胞群落。群落形成和细胞间交流的初始阶段对于理解细菌的群体行为至关重要,而这些阶段很大程度上依赖于细胞的空间组织。因此,在纳米尺度上控制细菌细胞的分布和生长对于理解群体形成初始阶段的细胞间通讯机制非常重要。金黄色葡萄球菌是一种普遍存在的人类病原体,由于该物种的抗生素耐药菌株的出现,导致了危及生命的感染,因此具有特殊的临床重要性。尽管已经有几种方法试图将单个细菌细胞图案化到固体表面上,但没有研究真正控制了生长群落的 3D 结构。在此,我们提出了一种简单、低成本的方法来对金黄色葡萄球菌的细菌群落进行图案化,并控制其生长的结构。通过利用微图案化聚二甲基硅氧烷平台的润湿性,借助金黄色葡萄球菌细胞的生理活性,我们制造了各种大小的细菌微群落的连接网络。与传统的表面生物膜异质生长不同,在这项工作中,图案化的金黄色葡萄球菌微群落从少数几个细菌细胞的纳米串径向生长,当提供富含营养的环境时,形成了几微米厚的棒状结构。这种简单、高效和低成本的方法可以作为细胞间通讯现象的研究平台,例如群体感应、水平基因转移和代谢交叉喂养,特别是在群落形成的初始阶段。