Hutson M Shane, Leung Maxwell C K, Baker Nancy C, Spencer Richard M, Knudsen Thomas B
Department of Physics & Astronomy, Department of Biological Sciences and Vanderbilt Institute for Integrative Biosystem Research & Education, Vanderbilt University , Nashville, Tennessee 37235, United States.
Oak Ridge Institute for Science & Education , Oak Ridge, Tennessee 37832, United States.
Chem Res Toxicol. 2017 Apr 17;30(4):965-979. doi: 10.1021/acs.chemrestox.6b00350. Epub 2017 Jan 20.
Morphogenetic events are driven by cell-generated physical forces and complex cellular dynamics. To improve our capacity to predict developmental effects from chemical-induced cellular alterations, we built a multicellular agent-based model in CompuCell3D that recapitulates the cellular networks and collective cell behavior underlying growth and fusion of the mammalian secondary palate. The model incorporated multiple signaling pathways (TGFβ, BMP, FGF, EGF, and SHH) in a biological framework to recapitulate morphogenetic events from palatal outgrowth through midline fusion. It effectively simulated higher-level phenotypes (e.g., midline contact, medial edge seam (MES) breakdown, mesenchymal confluence, and fusion defects) in response to genetic or environmental perturbations. Perturbation analysis of various control features revealed model functionality with respect to cell signaling systems and feedback loops for growth and fusion, diverse individual cell behaviors and collective cellular behavior leading to physical contact and midline fusion, and quantitative analysis of the TGF/EGF switch that controls MES breakdown-a key event in morphogenetic fusion. The virtual palate model was then executed with theoretical chemical perturbation scenarios to simulate switch behavior leading to a disruption of fusion following chronic (e.g., dioxin) and acute (e.g., retinoic acid) chemical exposures. This computer model adds to similar systems models toward an integrative "virtual embryo" for simulation and quantitative prediction of adverse developmental outcomes following genetic perturbation and/or environmental disruption.
形态发生事件由细胞产生的物理力和复杂的细胞动力学驱动。为了提高我们从化学诱导的细胞改变预测发育效应的能力,我们在CompuCell3D中构建了一个基于多细胞代理的模型,该模型概括了哺乳动物次生腭生长和融合背后的细胞网络和集体细胞行为。该模型在一个生物学框架中纳入了多个信号通路(TGFβ、BMP、FGF、EGF和SHH),以概括从腭长出到中线融合的形态发生事件。它有效地模拟了响应遗传或环境扰动的高级表型(例如,中线接触、内侧边缘缝(MES)分解、间充质汇合和融合缺陷)。对各种控制特征的扰动分析揭示了模型在细胞信号系统和生长与融合的反馈回路方面的功能、导致物理接触和中线融合的不同个体细胞行为和集体细胞行为,以及对控制MES分解(形态发生融合中的关键事件)的TGF/EGF开关的定量分析。然后,使用理论化学扰动场景执行虚拟腭模型,以模拟在慢性(例如二恶英)和急性(例如视黄酸)化学暴露后导致融合破坏的开关行为。这个计算机模型为类似的系统模型增添了内容,朝着一个综合的“虚拟胚胎”发展,用于模拟和定量预测遗传扰动和/或环境破坏后的不良发育结果。