Suppr超能文献

治疗结核病新药物方案的优先级设定:一种流行病学模型

Priority-Setting for Novel Drug Regimens to Treat Tuberculosis: An Epidemiologic Model.

作者信息

Kendall Emily A, Shrestha Sourya, Cohen Ted, Nuermberger Eric, Dooley Kelly E, Gonzalez-Angulo Lice, Churchyard Gavin J, Nahid Payam, Rich Michael L, Bansbach Cathy, Forissier Thomas, Lienhardt Christian, Dowdy David W

机构信息

Johns Hopkins University School of Medicine, Division of Infectious Diseases, Baltimore, Maryland, United States of America.

Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, Maryland, United States of America.

出版信息

PLoS Med. 2017 Jan 3;14(1):e1002202. doi: 10.1371/journal.pmed.1002202. eCollection 2017 Jan.

Abstract

BACKGROUND

Novel drug regimens are needed for tuberculosis (TB) treatment. New regimens aim to improve on characteristics such as duration, efficacy, and safety profile, but no single regimen is likely to be ideal in all respects. By linking these regimen characteristics to a novel regimen's ability to reduce TB incidence and mortality, we sought to prioritize regimen characteristics from a population-level perspective.

METHODS AND FINDINGS

We developed a dynamic transmission model of multi-strain TB epidemics in hypothetical populations reflective of the epidemiological situations in India (primary analysis), South Africa, the Philippines, and Brazil. We modeled the introduction of various novel rifampicin-susceptible (RS) or rifampicin-resistant (RR) TB regimens that differed on six characteristics, identified in consultation with a team of global experts: (1) efficacy, (2) duration, (3) ease of adherence, (4) medical contraindications, (5) barrier to resistance, and (6) baseline prevalence of resistance to the novel regimen. We compared scale-up of these regimens to a baseline reflective of continued standard of care. For our primary analysis situated in India, our model generated baseline TB incidence and mortality of 157 (95% uncertainty range [UR]: 113-187) and 16 (95% UR: 9-23) per 100,000 per year at the time of novel regimen introduction and RR TB incidence and mortality of 6 (95% UR: 4-10) and 0.6 (95% UR: 0.3-1.1) per 100,000 per year. An optimal RS TB regimen was projected to reduce 10-y TB incidence and mortality in the India-like scenario by 12% (95% UR: 6%-20%) and 11% (95% UR: 6%-20%), respectively, compared to current-care projections. An optimal RR TB regimen reduced RR TB incidence by an estimated 32% (95% UR: 18%-46%) and RR TB mortality by 30% (95% UR: 18%-44%). Efficacy was the greatest determinant of impact; compared to a novel regimen meeting all minimal targets only, increasing RS TB treatment efficacy from 94% to 99% reduced TB mortality by 6% (95% UR: 1%-13%, half the impact of a fully optimized regimen), and increasing the efficacy against RR TB from 76% to 94% lowered RR TB mortality by 13% (95% UR: 6%-23%). Reducing treatment duration or improving ease of adherence had smaller but still substantial impact: shortening RS TB treatment duration from 6 to 2 mo lowered TB mortality by 3% (95% UR: 1%-6%), and shortening RR TB treatment from 20 to 6 mo reduced RR TB mortality by 8% (95% UR: 4%-13%), while reducing nonadherence to the corresponding regimens by 50% reduced TB and RR TB mortality by 2% (95% UR: 1%-4%) and 6% (95% UR: 3%-10%), respectively. Limitations include sparse data on key model parameters and necessary simplifications to model structure and outcomes.

CONCLUSIONS

In designing clinical trials of novel TB regimens, investigators should consider that even small changes in treatment efficacy may have considerable impact on TB-related incidence and mortality. Other regimen improvements may still have important benefits for resource allocation and outcomes such as patient quality of life.

摘要

背景

结核病(TB)治疗需要新的药物方案。新方案旨在在疗程、疗效和安全性等方面有所改进,但没有单一方案可能在所有方面都理想。通过将这些方案特征与新方案降低结核病发病率和死亡率的能力联系起来,我们试图从人群层面的角度对方案特征进行优先排序。

方法和结果

我们建立了一个多菌株结核病流行的动态传播模型,该模型基于反映印度(主要分析)、南非、菲律宾和巴西流行病学情况的假设人群。我们模拟了引入各种对利福平敏感(RS)或利福平耐药(RR)的新型结核病方案,这些方案在六个特征上有所不同,这些特征是在与一组全球专家协商后确定的:(1)疗效,(2)疗程,(3)依从性,(4)医学禁忌,(5)耐药屏障,以及(6)对新方案的耐药基线患病率。我们将这些方案的推广与反映持续标准治疗的基线进行了比较。对于我们位于印度的主要分析,我们的模型在引入新方案时产生的结核病基线发病率和死亡率分别为每10万人每年157例(95%不确定性范围[UR]:113 - 187)和16例(95% UR:9 - 23),RR结核病发病率和死亡率分别为每10万人每年6例(95% UR:4 - 10)和0.6例(95% UR:0.3 - 1.1)。预计在类似印度的情况下,一种最佳的RS结核病方案与当前治疗预测相比,可将10年结核病发病率和死亡率分别降低12%(95% UR:6% - 20%)和11%(95% UR:6% - 20%)。一种最佳的RR结核病方案估计可将RR结核病发病率降低32%(95% UR:18% - 46%),RR结核病死亡率降低30%(95% UR:18% - 44%)。疗效是影响的最大决定因素;与仅满足所有最低目标的新方案相比,将RS结核病治疗疗效从94%提高到99%可使结核病死亡率降低6%(95% UR:1% - 13%,是完全优化方案影响的一半),将对RR结核病的疗效从76%提高到94%可使RR结核病死亡率降低13%(95% UR:6% - 23%)。缩短疗程或提高依从性的影响较小但仍然很大:将RS结核病治疗疗程从6个月缩短至2个月可使结核病死亡率降低3%(95% UR:1% - 6%),将RR结核病治疗从20个月缩短至6个月可使RR结核病死亡率降低8%(95% UR:4% - 13%),而将相应方案的不依从率降低50%可使结核病和RR结核病死亡率分别降低2%(95% UR:1% - 4%)和6%(95% UR:3% - 10%)。局限性包括关键模型参数的数据稀少以及对模型结构和结果的必要简化。

结论

在设计新型结核病方案的临床试验时,研究人员应考虑到即使治疗疗效的微小变化也可能对结核病相关的发病率和死亡率产生相当大的影响。其他方案改进对于资源分配和诸如患者生活质量等结果可能仍然具有重要益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验