Suppr超能文献

一种用于简化基因组规模代谢网络的混合整数线性规划方法。

A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

作者信息

Röhl Annika, Bockmayr Alexander

机构信息

Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, Berlin, Germany.

出版信息

BMC Bioinformatics. 2017 Jan 3;18(1):2. doi: 10.1186/s12859-016-1412-z.

Abstract

BACKGROUND

Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement.

RESULTS

Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways.

CONCLUSIONS

Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

摘要

背景

基于约束的分析已成为研究代谢网络的一种广泛使用的方法。虽然一些相关算法可应用于具有数千个反应的基因组规模网络重建,但其他算法则限于小型或中型模型。2015年,埃尔德里希等人引入了一种名为NetworkReducer的方法,该方法可将大型代谢网络简化为较小的子网,同时保留一组可由用户指定的生物学要求。早在2001年,布尔加德等人就开发了一种混合整数线性规划(MILP)方法,用于在给定生长需求下计算最小反应集。

结果

在此,我们提出一种MILP方法,用于计算具有给定属性的最小子网。NetworkReducer不能保证(活性反应数量方面的)最小性,而布尔加德等人的方法不允许指定不同的生物学要求。我们的程序比NetworkReducer快约5至10倍,并且在存在多个最小子网的情况下可以枚举所有最小子网。这使得能够识别所有子网中都存在的共同反应以及出现在替代途径中的反应。

结论

在实践中,通常无法将复杂的分析方法应用于基因组规模的代谢网络。因此,可能有必要在保留重要功能的同时减小网络规模。我们提出了一种针对此问题的MILP解决方案。与先前的工作相比,我们的方法更高效,并且不仅能够计算出一个,甚至能够计算出所有满足所需属性的最小子网。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验