Suppr超能文献

建立大分子资源分配的多尺度机制模型。

Modeling the multi-scale mechanisms of macromolecular resource allocation.

机构信息

Bioengineering Department, University of California, San Diego, La Jolla, CA, USA.

Bioengineering Department, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA.

出版信息

Curr Opin Microbiol. 2018 Oct;45:8-15. doi: 10.1016/j.mib.2018.01.002. Epub 2018 Jan 24.

Abstract

As microbes face changing environments, they dynamically allocate macromolecular resources to produce a particular phenotypic state. Broad 'omics' data sets have revealed several interesting phenomena regarding how the proteome is allocated under differing conditions, but the functional consequences of these states and how they are achieved remain open questions. Various types of multi-scale mathematical models have been used to elucidate the genetic basis for systems-level adaptations. In this review, we outline several different strategies by which microbes accomplish resource allocation and detail how mathematical models have aided in our understanding of these processes. Ultimately, such modeling efforts have helped elucidate the principles of proteome allocation and hold promise for further discovery.

摘要

当微生物面临不断变化的环境时,它们会动态分配大分子资源以产生特定的表型状态。广泛的“组学”数据集揭示了一些关于在不同条件下如何分配蛋白质组的有趣现象,但这些状态的功能后果以及它们是如何实现的仍然是悬而未决的问题。各种类型的多尺度数学模型已被用于阐明系统水平适应的遗传基础。在这篇综述中,我们概述了微生物完成资源分配的几种不同策略,并详细介绍了数学模型如何帮助我们理解这些过程。最终,这些建模工作有助于阐明蛋白质组分配的原则,并为进一步的发现提供了希望。

相似文献

1
Modeling the multi-scale mechanisms of macromolecular resource allocation.
Curr Opin Microbiol. 2018 Oct;45:8-15. doi: 10.1016/j.mib.2018.01.002. Epub 2018 Jan 24.
3
Proteome allocation is linked to transcriptional regulation through a modularized transcriptome.
Nat Commun. 2024 Jun 19;15(1):5234. doi: 10.1038/s41467-024-49231-y.
4
Resource allocation and metabolism: the search for governing principles.
Curr Opin Microbiol. 2018 Oct;45:77-83. doi: 10.1016/j.mib.2018.02.008. Epub 2018 Mar 12.
6
An inventory of the bacterial macromolecular components and their spatial organization.
FEMS Microbiol Rev. 2011 Mar;35(2):395-414. doi: 10.1111/j.1574-6976.2010.00254.x. Epub 2010 Oct 22.
9
Good things come in small packages: subcellular organization and development in bacteria.
Curr Opin Microbiol. 2011 Dec;14(6):687-90. doi: 10.1016/j.mib.2011.10.011. Epub 2011 Nov 14.
10
Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria.
Mol Microbiol. 2013 May;88(4):655-63. doi: 10.1111/mmi.12221. Epub 2013 Apr 21.

引用本文的文献

1
Comprehensive evaluation of the capacities of microbial cell factories.
Nat Commun. 2025 Mar 24;16(1):2869. doi: 10.1038/s41467-025-58227-1.
3
Flux balance analysis-based metabolic modeling of microbial secondary metabolism: Current status and outlook.
PLoS Comput Biol. 2023 Aug 24;19(8):e1011391. doi: 10.1371/journal.pcbi.1011391. eCollection 2023 Aug.
5
Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning.
Nat Commun. 2023 Jul 12;14(1):4139. doi: 10.1038/s41467-023-39840-4.
6
Toward mechanistic modeling and rational engineering of plant respiration.
Plant Physiol. 2023 Apr 3;191(4):2150-2166. doi: 10.1093/plphys/kiad054.
7
Deficiency of GntR Family Regulator MSMEG_5174 Promotes Resistance to Aminoglycosides via Manipulating Purine Metabolism.
Front Microbiol. 2022 Jul 11;13:919538. doi: 10.3389/fmicb.2022.919538. eCollection 2022.
8
Growth-rate-dependent and nutrient-specific gene expression resource allocation in fission yeast.
Life Sci Alliance. 2022 Feb 28;5(5). doi: 10.26508/lsa.202101223. Print 2022 May.
9
Genome-scale modeling of yeast metabolism: retrospectives and perspectives.
FEMS Yeast Res. 2022 Feb 22;22(1). doi: 10.1093/femsyr/foac003.

本文引用的文献

2
COBRAme: A computational framework for genome-scale models of metabolism and gene expression.
PLoS Comput Biol. 2018 Jul 5;14(7):e1006302. doi: 10.1371/journal.pcbi.1006302. eCollection 2018 Jul.
3
Metabolic Models of Protein Allocation Call for the Kinetome.
Cell Syst. 2017 Dec 27;5(6):538-541. doi: 10.1016/j.cels.2017.11.013.
4
Metabolic-flux dependent regulation of microbial physiology.
Curr Opin Microbiol. 2018 Apr;42:71-78. doi: 10.1016/j.mib.2017.10.029. Epub 2017 Nov 15.
5
Quantifying the benefit of a proteome reserve in fluctuating environments.
Nat Commun. 2017 Oct 31;8(1):1225. doi: 10.1038/s41467-017-01242-8.
6
Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11548-11553. doi: 10.1073/pnas.1705524114. Epub 2017 Oct 10.
7
A global resource allocation strategy governs growth transition kinetics of Escherichia coli.
Nature. 2017 Nov 2;551(7678):119-123. doi: 10.1038/nature24299. Epub 2017 Oct 25.
8
Antibiotic efficacy-context matters.
Curr Opin Microbiol. 2017 Oct;39:73-80. doi: 10.1016/j.mib.2017.09.002. Epub 2017 Oct 16.
9
iML1515, a knowledgebase that computes Escherichia coli traits.
Nat Biotechnol. 2017 Oct 11;35(10):904-908. doi: 10.1038/nbt.3956.
10
Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring.
Metab Eng. 2017 Nov;44:100-107. doi: 10.1016/j.ymben.2017.09.012. Epub 2017 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验