Suppr超能文献

医学贝叶斯性能指标的本体分析。

An ontological analysis of medical Bayesian indicators of performance.

作者信息

Barton Adrien, Ethier Jean-François, Duvauferrier Régis, Burgun Anita

机构信息

Département de médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada.

Centre de recherche du CHUS, CIUSSS de l'Estrie-CHUS, Sherbrooke, Québec, Canada.

出版信息

J Biomed Semantics. 2017 Jan 3;8(1):1. doi: 10.1186/s13326-016-0099-4.

Abstract

BACKGROUND

Biomedical ontologies aim at providing the most exhaustive and rigorous representation of reality as described by biomedical sciences. A large part of medical reasoning deals with diagnosis and is essentially probabilistic. It would be an asset for biomedical ontologies to be able to support such a probabilistic reasoning and formalize Bayesian indicators of performance: sensitivity, specificity, positive predictive value and negative predictive value. In doing so, one has to consider that not only the positive and negative predictive values, but also sensitivity and specificity depend upon the group under consideration: this is the "spectrum effect".

METHODS

The sensitivity value of an index test IT for a disease M in a group g is identified with the proportion of people in g who have M who would get a positive result to IT if the test IT was realized on them. This value can be estimated by selecting a reference test RT for M and a sample s of g, and measuring the proportion, among members of s having a positive result to RT, of those who got a positive result to IT. Similar approximation strategies hold for prevalence, specificity, PPV and NPV. Indicators of diagnostic performances and their estimations are formalized in the context of the OBO Foundry, built on the realist upper ontology Basic Formal Ontology (BFO).

RESULTS

Entities and relations from the Ontology for Biomedical investigations (OBI) and the Information Artifact Ontology (IAO) are used and complemented to represent reference tests and index tests, tests executions, tests results and the relations involving those entities, as well as the values of indicators of performance and their estimates. The computations taking as input several estimates of an indicator of performance to produce a finer estimate are also represented. The value of e.g. sensitivity estimates should be dissociated from the real sensitivity value - which involves possible, non-actual conditions, namely the result a person would get if a medical test would be performed on her. Such conditions could not be directly represented in a realist ontology, but a representation is proposed that introduces only actual entities by considering a disposition whose probability value is the real sensitivity value. A sensitivity estimate is a data item which is about such a disposition.

CONCLUSIONS

This model provides theoretical basis for the representation of entities supporting Bayesian reasoning in ontologies.

摘要

背景

生物医学本体旨在提供生物医学科学所描述的现实的最详尽和严格的表示。医学推理的很大一部分涉及诊断,本质上是概率性的。对于生物医学本体来说,能够支持这种概率推理并将贝叶斯性能指标(敏感性、特异性、阳性预测值和阴性预测值)形式化将是一项资产。在这样做时,必须考虑到不仅阳性和阴性预测值,而且敏感性和特异性也取决于所考虑的群体:这就是“谱效应”。

方法

指标测试IT在群体g中针对疾病M的敏感性值被定义为g中患有M的人如果接受测试IT会得到阳性结果的比例。这个值可以通过为M选择一个参考测试RT和g的一个样本s,并测量s中对RT呈阳性结果的成员中对IT呈阳性结果的比例来估计。对于患病率、特异性、阳性预测值和阴性预测值,类似的近似策略也适用。诊断性能指标及其估计在基于现实主义上层本体基本形式本体(BFO)构建的OBO铸造厂的背景下被形式化。

结果

生物医学调查本体(OBI)和信息工件本体(IAO)中的实体和关系被用于并得到补充,以表示参考测试和指标测试、测试执行、测试结果以及涉及这些实体的关系,以及性能指标的值及其估计。还表示了以几个性能指标估计值作为输入以产生更精细估计的计算。例如,敏感性估计值应与实际敏感性值区分开来——实际敏感性值涉及可能的、非实际的情况,即如果对一个人进行医学测试她会得到的结果。这样的情况不能直接在现实主义本体中表示,但提出了一种表示方法,通过考虑一种倾向来引入仅实际实体,其概率值就是实际敏感性值。敏感性估计是关于这样一种倾向的数据项。

结论

该模型为本体中支持贝叶斯推理的实体表示提供了理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f35/5209884/ad434f55d7ef/13326_2016_99_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验