Vos Aurin M, Heijboer Amber, Boschker Henricus T S, Bonnet Barbara, Lugones Luis G, Wösten Han A B
Department of Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
AMB Express. 2017 Dec;7(1):12. doi: 10.1186/s13568-016-0304-y. Epub 2017 Jan 3.
Agaricus bisporus mushrooms are commercially produced on a microbe rich compost. Here, fungal and bacterial biomass was quantified in compost with and without colonization by A. bisporus. Chitin content, indicative of total fungal biomass, increased during a 26-day period from 576 to 779 nmol N-acetylglucosamine g compost in the absence of A. bisporus (negative control). A similar increase was found in the presence of this mushroom forming fungus. The fungal phospholipid-derived fatty acid (PLFA) marker C18:2ω6, indicative of the living fraction of the fungal biomass, decreased from 575 to 280 nmol g compost in the negative control. In contrast, it increased to 1200 nmol g compost in the presence of A. bisporus. Laccase activity was absent throughout culturing in the negative control, while it correlated with the fungal PLFA marker in the presence of A. bisporus. PLFA was also used to quantify living bacterial biomass. In the negative control, the bacterial markers remained constant at 3000-3200 nmol PLFA g compost. In contrast, they decreased to 850 nmol g compost during vegetative growth of A. bisporus, implying that bacterial biomass decreased from 17.7 to 4.7 mg g compost. The relative amount of the Gram positive associated PLFA markers a15:0 and a17:0 and the Gram negative PLFA associated markers cy17:0 and cy19:0 increased and decreased, respectively, suggesting that Gram negative bacteria are more suppressed by A. bisporus. Together, these data indicate that fungal biomass can make up 6.8% of the compost after A. bisporus colonization, 57% of which being dead. Moreover, results show that A. bisporus impacts biomass and composition of bacteria in compost.
双孢蘑菇在富含微生物的堆肥上进行商业化生产。在此,对有无双孢蘑菇定殖的堆肥中的真菌和细菌生物量进行了定量分析。几丁质含量可指示总真菌生物量,在无双孢蘑菇的情况下(阴性对照),在26天的时间里,从576纳摩尔N - 乙酰葡糖胺/克堆肥增加到779纳摩尔N - 乙酰葡糖胺/克堆肥。在这种形成蘑菇的真菌存在的情况下也发现了类似的增加。真菌磷脂衍生脂肪酸(PLFA)标记物C18:2ω6可指示真菌生物量的活性部分,在阴性对照中从575纳摩尔/克堆肥降至280纳摩尔/克堆肥。相比之下,在双孢蘑菇存在的情况下,它增加到1200纳摩尔/克堆肥。在阴性对照的整个培养过程中均未检测到漆酶活性,而在双孢蘑菇存在的情况下,它与真菌PLFA标记物相关。PLFA也用于定量活性细菌生物量。在阴性对照中,细菌标记物保持在3000 - 3200纳摩尔PLFA/克堆肥的恒定水平。相比之下,在双孢蘑菇营养生长期间,它们降至850纳摩尔/克堆肥,这意味着细菌生物量从17.7毫克/克堆肥降至4.7毫克/克堆肥。与革兰氏阳性相关的PLFA标记物a15:0和a17:0以及与革兰氏阴性相关的PLFA标记物cy17:0和cy19:0的相对含量分别增加和减少,这表明革兰氏阴性细菌受到双孢蘑菇的抑制作用更强。总之,这些数据表明,双孢蘑菇定殖后,真菌生物量可占堆肥的6.8%,其中57%为死亡生物量。此外,结果表明双孢蘑菇会影响堆肥中细菌的生物量和组成。