Suppr超能文献

具有多壁碳纳米管的微尺度聚(ε-己内酯)支架的电流体动力学3D打印

Electrohydrodynamic 3D printing of microscale poly (ε-caprolactone) scaffolds with multi-walled carbon nanotubes.

作者信息

He Jiankang, Xu Fangyuan, Dong Ruonan, Guo Baolin, Li Dichen

机构信息

State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.

出版信息

Biofabrication. 2017 Jan 4;9(1):015007. doi: 10.1088/1758-5090/aa53bc.

Abstract

Electrohydrodynamic 3D printing is a promising strategy to controllably fabricate hierarchical fibrous architectures that mimic the structural organizations of native extracellular matrix. However, most of the existing investigations are mainly based on viscous melted biopolymers which make it difficult to uniformly incorporate bioactive or functional nanobiomaterials into the printed microfibers for functionization. Here we investigated the feasibility of employing solution-based electrohydrodynamic 3D printing to fabricate microscale poly (ε-caprolactone) (PCL) scaffolds with multi-walled carbon nanotubes (MWCNTs). The effect of polyethylene oxide (PEO) content in the acetic acid solution of PCL on the 3D profile and dimension of the electrohydrodynamically printed walls was studied for an optimal PEO-PCL composition. When the contents of PEO and PCL are 8 w/v % and 5 w/v %, respectively, 3D fibrous lactic structures with different MWCNTs content could be stably printed with the fiber diameter about 10 μm, close to the size of living cells. Biological experiments showed that although the addition of MWCNTs negatively affected cellular attachment compared with PEO-PCL scaffolds, the electrohydrodynamically printed PEO-PCL-MWCNT scaffolds facilitated cell alignment. It is envisioned that the presented electrohydrodynamic 3D printing might provide a new strategy to flexibly incorporate various nanobiomaterials into microscale fibrous structures for specific functionality or mimicking of hierarchically organized nanocomposites in vivo.

摘要

电流体动力学3D打印是一种很有前景的策略,可用于可控地制造模仿天然细胞外基质结构组织的分层纤维结构。然而,现有的大多数研究主要基于粘性熔融生物聚合物,这使得难以将生物活性或功能性纳米生物材料均匀地掺入打印的微纤维中以实现功能化。在此,我们研究了采用基于溶液的电流体动力学3D打印来制造含有多壁碳纳米管(MWCNT)的微尺度聚(ε-己内酯)(PCL)支架的可行性。针对最佳的PEO-PCL组合物,研究了PCL乙酸溶液中聚环氧乙烷(PEO)含量对电流体动力学打印壁的3D轮廓和尺寸的影响。当PEO和PCL的含量分别为8 w/v%和5 w/v%时,可以稳定地打印出具有不同MWCNT含量的3D纤维状结构,纤维直径约为10μm,接近活细胞的大小。生物学实验表明,尽管与PEO-PCL支架相比,添加MWCNT对细胞附着有负面影响,但电流体动力学打印的PEO-PCL-MWCNT支架促进了细胞排列。可以设想,所提出的电流体动力学3D打印可能提供一种新策略,以灵活地将各种纳米生物材料掺入微尺度纤维结构中,以实现特定功能或模仿体内分层组织的纳米复合材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验