Masurkar Arjun V, Srinivas Kalyan V, Brann David H, Warren Richard, Lowes Daniel C, Siegelbaum Steven A
Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
Department of Neuroscience, Columbia University, New York, NY 10032, USA.
Cell Rep. 2017 Jan 3;18(1):148-160. doi: 10.1016/j.celrep.2016.12.012.
Although hippocampal CA1 pyramidal neurons (PNs) were thought to comprise a uniform population, recent evidence supports two distinct sublayers along the radial axis, with deep neurons more likely to form place cells than superficial neurons. CA1 PNs also differ along the transverse axis with regard to direct inputs from entorhinal cortex (EC), with medial EC (MEC) providing spatial information to PNs toward CA2 (proximal CA1) and lateral EC (LEC) providing non-spatial information to PNs toward subiculum (distal CA1). We demonstrate that the two inputs differentially activate the radial sublayers and that this difference reverses along the transverse axis, with MEC preferentially targeting deep PNs in proximal CA1 and LEC preferentially exciting superficial PNs in distal CA1. This differential excitation reflects differences in dendritic spine numbers. Our results reveal a heterogeneity in EC-CA1 connectivity that may help explain differential roles of CA1 PNs in spatial and non-spatial learning and memory.
尽管海马体CA1区锥体神经元(PNs)曾被认为是一个均匀的群体,但最近的证据支持沿径向轴存在两个不同的亚层,深层神经元比浅层神经元更有可能形成位置细胞。CA1区PNs在横轴上也因来自内嗅皮层(EC)的直接输入而有所不同,内侧内嗅皮层(MEC)向朝向CA2的(近端CA1)PNs提供空间信息,而外侧内嗅皮层(LEC)向朝向海马下托的(远端CA1)PNs提供非空间信息。我们证明,这两种输入以不同方式激活径向亚层,且这种差异沿横轴反转,MEC优先靶向近端CA1的深层PNs,而LEC优先兴奋远端CA1的浅层PNs。这种差异激发反映了树突棘数量的差异。我们的结果揭示了EC-CA1连接的异质性,这可能有助于解释CA1区PNs在空间和非空间学习与记忆中的不同作用。