Suppr超能文献

子宫内膜癌的风险因素、激素受体与死亡率预测

Endometrial Cancer Risk Factors, Hormone Receptors, and Mortality Prediction.

作者信息

Busch Evan L, Crous-Bou Marta, Prescott Jennifer, Chen Maxine M, Downing Michael J, Rosner Bernard A, Mutter George L, De Vivo Immaculata

机构信息

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

出版信息

Cancer Epidemiol Biomarkers Prev. 2017 May;26(5):727-735. doi: 10.1158/1055-9965.EPI-16-0821. Epub 2017 Jan 4.

Abstract

Endometrial tumors arise from a hormonally responsive tissue. Defining subtypes by hormone receptor expression might better inform etiology and prediction of patient outcomes. We evaluated the potential role of tumor estrogen receptor (ER) and progesterone receptor (PR) expression to define endometrial cancer subtypes. We measured semi-continuous ER and PR protein expression in tissue specimens from 360 endometrial primary tumors from the Nurses' Health Study. To explore the impact of different definitions of marker positivity, we dichotomized ER and PR expression at different cut points in increments of 5% positive cells. Logistic regression was used to estimate associations between endometrial cancer risk factors, such as body mass index, with dichotomous ER or PR status. Reclassification statistics were used to assess whether adding dichotomous ER or PR status to standard prognostic factors of stage, grade, and histologic type would improve endometrial cancer-specific mortality prediction. Compared with not being obese, obesity increased the odds of having an ER-positive tumor at cut points of 0% to 20% [maximum OR, 2.92; 95% confidence interval (CI), 1.34-6.33] as well as the odds of having a PR-positive tumor at cut points of 70% to 90% (maximum OR, 2.53; 95% CI, 1.36-4.68). Adding dichotomous tumor ER or PR status to the panel of standard predictors did not improve both model discrimination and calibration. Obesity may be associated with greater endometrial tumor expression of ER and PR. Adding either marker does not appear to improve mortality prediction beyond the standard predictors. Body mass index might explain some of the biological variation among endometrial tumors. .

摘要

子宫内膜肿瘤起源于对激素有反应的组织。通过激素受体表达来定义亚型可能更有助于了解病因和预测患者预后。我们评估了肿瘤雌激素受体(ER)和孕激素受体(PR)表达在定义子宫内膜癌亚型方面的潜在作用。我们测量了来自护士健康研究的360例子宫内膜原发性肿瘤组织标本中ER和PR蛋白的半连续表达。为了探讨标记物阳性不同定义的影响,我们以5%阳性细胞的增量在不同切点将ER和PR表达二分法。使用逻辑回归估计子宫内膜癌风险因素(如体重指数)与二分法ER或PR状态之间的关联。重新分类统计用于评估将二分法ER或PR状态添加到分期、分级和组织学类型等标准预后因素中是否会改善子宫内膜癌特异性死亡率预测。与非肥胖相比,肥胖在0%至20%的切点增加了ER阳性肿瘤的几率[最大比值比(OR),2.92;95%置信区间(CI),1.34 - 6.33],以及在70%至90%的切点增加了PR阳性肿瘤的几率(最大OR,2.53;95%CI,1.36 - 4.68)。将二分法肿瘤ER或PR状态添加到标准预测指标组中并没有改善模型的辨别力和校准。肥胖可能与子宫内膜肿瘤中ER和PR的更高表达相关。添加任何一种标记物似乎都不能在标准预测指标之外改善死亡率预测。体重指数可能解释了子宫内膜肿瘤之间的一些生物学差异。

相似文献

1
Endometrial Cancer Risk Factors, Hormone Receptors, and Mortality Prediction.子宫内膜癌的风险因素、激素受体与死亡率预测
Cancer Epidemiol Biomarkers Prev. 2017 May;26(5):727-735. doi: 10.1158/1055-9965.EPI-16-0821. Epub 2017 Jan 4.
2
ER and PR expression and survival after endometrial cancer.子宫内膜癌的 ER 和 PR 表达与生存。
Gynecol Oncol. 2018 Feb;148(2):258-266. doi: 10.1016/j.ygyno.2017.11.027. Epub 2017 Dec 6.

引用本文的文献

10
Cut points and contexts.切点和语境。
Cancer. 2021 Dec 1;127(23):4348-4355. doi: 10.1002/cncr.33838. Epub 2021 Aug 23.

本文引用的文献

2
The consensus molecular subtypes of colorectal cancer.结直肠癌的共识分子亚型
Nat Med. 2015 Nov;21(11):1350-6. doi: 10.1038/nm.3967. Epub 2015 Oct 12.
3
Defining breast cancer intrinsic subtypes by quantitative receptor expression.通过定量受体表达定义乳腺癌内在亚型。
Oncologist. 2015 May;20(5):474-82. doi: 10.1634/theoncologist.2014-0372. Epub 2015 Apr 23.
5
Six persistent research misconceptions.六个持续存在的研究误区。
J Gen Intern Med. 2014 Jul;29(7):1060-4. doi: 10.1007/s11606-013-2755-z. Epub 2014 Jan 23.
10
Revised FIGO staging for carcinoma of the endometrium.子宫内膜癌的国际妇产科联盟(FIGO)修订分期
Int J Gynaecol Obstet. 2009 May;105(2):109. doi: 10.1016/j.ijgo.2009.02.010. Epub 2009 Apr 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验