Suppr超能文献

在完整的多壁碳纳米管上制备基于酶的涂层,作为生物燃料电池中的高效电极。

Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells.

机构信息

Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.

Department of Energy and Environmental Engineering, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.

出版信息

Sci Rep. 2017 Jan 5;7:40202. doi: 10.1038/srep40202.

Abstract

CNTs need to be dispersed in aqueous solution for their successful use, and most methods to disperse CNTs rely on tedious and time-consuming acid-based oxidation. Here, we report the simple dispersion of intact multi-walled carbon nanotubes (CNTs) by adding them directly into an aqueous solution of glucose oxidase (GOx), resulting in simultaneous CNT dispersion and facile enzyme immobilization through sequential enzyme adsorption, precipitation, and crosslinking (EAPC). The EAPC achieved high enzyme loading and stability because of crosslinked enzyme coatings on intact CNTs, while obviating the chemical pretreatment that can seriously damage the electron conductivity of CNTs. EAPC-driven GOx activity was 4.5- and 11-times higher than those of covalently-attached GOx (CA) on acid-treated CNTs and simply-adsorbed GOx (ADS) on intact CNTs, respectively. EAPC showed no decrease of GOx activity for 270 days. EAPC was employed to prepare the enzyme anodes for biofuel cells, and the EAPC anode produced 7.5-times higher power output than the CA anode. Even with a higher amount of bound non-conductive enzymes, the EAPC anode showed 1.7-fold higher electron transfer rate than the CA anode. The EAPC on intact CNTs can improve enzyme loading and stability with key routes of improved electron transfer in various biosensing and bioelectronics devices.

摘要

碳纳米管需要在水溶液中分散才能被成功使用,而大多数分散碳纳米管的方法都依赖于繁琐且耗时的基于酸的氧化。在这里,我们报告了一种通过直接将多壁碳纳米管(CNT)添加到葡萄糖氧化酶(GOx)的水溶液中,从而实现完整 CNT 简单分散的方法,通过顺序酶吸附、沉淀和交联(EAPC)实现 CNT 分散和酶的简便固定。由于交联酶涂层覆盖在完整的 CNT 上,EAPC 实现了高酶负载和稳定性,同时避免了可能严重破坏 CNT 电子导电性的化学预处理。EAPC 驱动的 GOx 活性分别比酸处理 CNT 上的共价连接 GOx(CA)和简单吸附在完整 CNT 上的 GOx(ADS)高 4.5 倍和 11 倍。EAPC 显示出 270 天内没有 GOx 活性下降。EAPC 用于制备生物燃料电池的酶阳极,EAPC 阳极产生的功率输出比 CA 阳极高 7.5 倍。即使结合了更多的非传导性酶,EAPC 阳极的电子转移速率也比 CA 阳极高 1.7 倍。EAPC 在完整的 CNT 上可以提高酶的负载和稳定性,并在各种生物传感和生物电子设备中改善电子转移的关键途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d233/5215464/368e037cbaf8/srep40202-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验