Chessel Anatole
LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau cedex, France.
Methods. 2017 Feb 15;115:110-118. doi: 10.1016/j.ymeth.2016.12.014. Epub 2017 Jan 3.
This review aims at providing a practical overview of the use of statistical features and associated data science methods in bioimage informatics. To achieve a quantitative link between images and biological concepts, one typically replaces an object coming from an image (a segmented cell or intracellular object, a pattern of expression or localisation, even a whole image) by a vector of numbers. They range from carefully crafted biologically relevant measurements to features learnt through deep neural networks. This replacement allows for the use of practical algorithms for visualisation, comparison and inference, such as the ones from machine learning or multivariate statistics. While originating mainly, for biology, in high content screening, those methods are integral to the use of data science for the quantitative analysis of microscopy images to gain biological insight, and they are sure to gather more interest as the need to make sense of the increasing amount of acquired imaging data grows more pressing.
本综述旨在对生物图像信息学中统计特征及相关数据科学方法的应用提供一个实用概述。为了在图像与生物学概念之间建立定量联系,人们通常用一个数字向量来替代来自图像的一个对象(一个分割后的细胞或细胞内对象、一种表达或定位模式,甚至是一整幅图像)。这些数字向量的范围从精心构建的具有生物学相关性的测量值到通过深度神经网络学习到的特征。这种替代使得诸如机器学习或多元统计中的实用算法可用于可视化、比较和推理。虽然这些方法主要起源于生物学中的高内涵筛选,但它们是数据科学用于显微镜图像定量分析以获取生物学见解的不可或缺的部分,并且随着理解日益增长的采集到的成像数据的需求变得更加迫切,它们肯定会引起更多关注。