Khateb Mohamed, Schiller Jackie, Schiller Yitzhak
The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
Department of Neurology, Rambam Medical Center, Haifa, Israel.
Elife. 2017 Jan 6;6:e21843. doi: 10.7554/eLife.21843.
The primary vibrissae motor cortex (vM1) is responsible for generating whisking movements. In parallel, vM1 also sends information directly to the sensory barrel cortex (vS1). In this study, we investigated the effects of vM1 activation on processing of vibrissae sensory information in vS1 of the rat. To dissociate the vibrissae sensory-motor loop, we optogenetically activated vM1 and independently passively stimulated principal vibrissae. Optogenetic activation of vM1 supra-linearly amplified the response of vS1 neurons to passive vibrissa stimulation in all cortical layers measured. Maximal amplification occurred when onset of vM1 optogenetic activation preceded vibrissa stimulation by 20 ms. In addition to amplification, vM1 activation also sharpened angular tuning of vS1 neurons in all cortical layers measured. Our findings indicated that in addition to output motor signals, vM1 also sends preparatory signals to vS1 that serve to amplify and sharpen the response of neurons in the barrel cortex to incoming sensory input signals.
初级触须运动皮层(vM1)负责产生触须运动。与此同时,vM1也直接向感觉桶状皮层(vS1)发送信息。在本研究中,我们调查了vM1激活对大鼠vS1中触须感觉信息处理的影响。为了分离触须感觉运动环路,我们用光遗传学方法激活vM1,并独立地对主要触须进行被动刺激。vM1的光遗传学激活超线性放大了在所有测量的皮层层中vS1神经元对被动触须刺激的反应。当vM1光遗传学激活的开始比触须刺激提前20毫秒时,出现最大放大。除了放大作用外,vM1激活还锐化了在所有测量的皮层层中vS1神经元的角度调谐。我们的研究结果表明,除了输出运动信号外,vM1还向vS1发送预备信号,这些信号有助于放大和锐化桶状皮层中神经元对传入感觉输入信号的反应。